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1. Is stateful:
● Generation at position i depends on tokens at positions [0, i-1]
● Results saved at a Key-Value cache to speed up computation
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1. Is stateful
2. Has large memory footprint:

○ Model parameters
○ KV cache and other intermediate states
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1. Is stateful
2. Has large memory footprint:

○ Model parameters
○ KV cache and other intermediate states

Inference is distributed across multiple GPUs with 
tensor and pipeline parallelism



Challenges of distributed LLM serving
1. Difference in prompt and per-token generation latency leads to pipeline bubbles

2. Inefficient usage of GPU memory

3. No failure handling
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Prompt processing vs per-token generation latency  

Due to the usage of KV cache, the time for prompt processing can be much higher than 
per-token generation time
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Problem: both prompt processing and 
token generation on the same GPU
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Inefficient usage of GPU memory
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Inefficient usage of GPU memory

time

One microbatch is processed at a time.

However, the KV cache of all microbatches 
is kept in GPU memory!
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Latency without failures
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Latency with a failure

19
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Challenges and our proposed solutions
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DéjàVu Key Idea 1: Prompt-Token disaggregation
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Dedicated GPUs for 
Token generation
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Dedicated GPUs for 
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Dedicated GPUs for 
Prompt processing

How to minimize KV 
cache streaming 

overheads?
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Dedicated GPUs for 
Prompt processing

How to minimize KV 
cache streaming 

overheads?

How to allocate 
resources for prompt 
processing and token 

generation?



Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

         Prompt-token disaggregation

2. Inefficient usage of GPU memory

Microbatch swapping

3. No failure handling
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DéjàVu Key Idea 2: Microbatch swapping
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How to best utilize PCIe 
bandwidth to minimize 

idle times?



Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

         Prompt-token disaggregation

2. Inefficient usage of GPU memory

Microbatch swapping

3. No failure handling

KV cache replication and fault-handling mechanism
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KV cache replication to CPU memory

+ efficient fault detection and recovery

DéjàVu Key Idea 3: KV cache replication
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3.   Statefulness and inefficient failure handling

Idea: Replicate the KV cache to persistent storage or remote CPU memory

Proposed solutions

How to minimize KV 
cache streaming 

overheads? How to efficiently 
detect failures and 

recover?
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Common requirement

1. Prompt-token disaggregation

2. Microbatch swapping

3. KV cache replication and fault-handling mechanism

            They all require a fast and versatile KV cache streaming mechanism
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● An efficient and modular KV cache streaming library, with optimizations for fast 
streaming

DéjàVuLib
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● An efficient and modular KV cache streaming library, with optimizations for fast 
streaming

1. Buffered Transfers                                   2. Layer-by-layer prompt cache streaming

                                                                                 3. Token computation and streaming overlap

DéjàVuLib
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Common requirement

1. Prompt-token disaggregation

2. Microbatch swapping

3. KV cache replication and fault-handling mechanism

 DéjàVu

  DéjàVuLib
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The DéjàVu system 
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Supports:  disaggregation, KV cache swapping, fault-tolerance 

More details in the paper 38



Evaluation
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DéjàVu disaggregation

OPT-66B BLOOM-176B

● Baseline-X: FasterTransformer with X machines
● DejaVu-X-Y: Disaggregation with X machines for prompt, Y for token lmsys dataset

Up to 2x higher 
throughput
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https://huggingface.co/datasets/lmsys/lmsys-chat-1m


Conclusion

Bimodal prompt vs per-token generation latency

Inefficient usage of GPU memory

Statefulness and inefficient failure handling
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KV cache replication and fault-handling 
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DéjàVu github repo: 


