DéjàVu: KV-cache Streaming for Fast, Fault-tolerant Generative LLM Serving

Foteini Strati^{1,3}, Sara McAllister^{2,3}, Amar Phanishayee³, Jakub Tarnawski³, Ana Klimovic¹ ¹ETH Zurich, ²Carnegie Mellon University, ³Microsoft Research

Generative LLM Serving

- **1. Is stateful:**
- Generation at position *i* depends on tokens at positions *[0, i-1]*
- Results saved at a *Key-Value cache* to speed up computation

- 1. Is stateful
- **2. Has large memory footprint:**
	- Model parameters
	- KV cache and other intermediate states

- 1. Is stateful
- **2. Has large memory footprint:**
	- Model parameters
	- KV cache and other intermediate states

Inference is distributed across multiple GPUs with tensor and pipeline parallelism

Challenges of distributed LLM serving

- 1. Difference in prompt and per-token generation latency leads to pipeline bubbles
- 2. Inefficient usage of GPU memory
- 3. No failure handling

Challenges of distributed LLM serving

- **1. Difference in prompt and per-token generation latency leads to pipeline bubbles**
- 2. Inefficient usage of GPU memory
- 3. No failure handling

Prompt processing vs per-token generation latency

Due to the usage of KV cache, the time for prompt processing can be much higher than per-token generation time

Prompt processing vs per-token generation latency

Due to the usage of KV cache, the time for prompt processing can be much higher than per-token generation time

 Bubbles and resource underutilization in pipeline parallel setups

Prompt processing vs per-token generation latency

Due to the usage of KV cache, the time for prompt processing can be much higher than per-token generation time

 Bubbles and resource underutilization in pipeline parallel setups

Challenges of distributed LLM serving

- 1. Difference in prompt and per-token generation latency leads to pipeline bubbles
- **2. Inefficient usage of GPU memory**
- 3. No failure handling

GPU memory

GPU memory

GPU memory

One microbatch is processed at a time.

However, the KV cache of *all* **microbatches is kept in GPU memory!**

Challenges of distributed LLM serving

- 1. Difference in prompt and per-token generation latency leads to pipeline bubbles
- 2. Inefficient usage of GPU memory
- **3. No failure handling**

Latency without failures

Latency with a failure

Challenges of distributed LLM serving

- 1. Difference in prompt and per-token generation latency leads to pipeline bubbles
- 2. Inefficient usage of GPU memory
- 3. No failure handling

Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

Prompt-token disaggregation

- 2. Inefficient usage of GPU memory
- 3. No failure handling

DéjàVu Key Idea 1: Prompt-Token disaggregation

DéjàVu Key Idea 1: Prompt-Token disaggregation

DéjàVu Key Idea 1: Prompt-Token disaggregation

Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

Prompt-token disaggregation

2. Inefficient usage of GPU memory

Microbatch swapping

3. No failure handling

DéjàVu Key Idea 2: Microbatch swapping

DéjàVu Key Idea 2: Microbatch swapping

DéjàVu Key Idea 2: Microbatch swapping

Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

Prompt-token disaggregation

2. Inefficient usage of GPU memory

Microbatch swapping

3. No failure handling

KV cache replication and fault-handling mechanism

DéjàVu Key Idea 3: KV cache replication

KV cache replication to CPU memory

+ efficient fault detection and recovery

Proposed solutions

3. Statefulness and inefficient failure handling

Idea: Replicate the KV cache to persistent storage or remote CPU memory

detect failures and recover?

Common requirement

- 1. Prompt-token disaggregation
- 2. Microbatch swapping
- 3. KV cache replication and fault-handling mechanism

 They all require a fast and versatile KV cache streaming mechanism

● An **efficient** and **modular** KV cache streaming library, with **optimizations for fast streaming**

- An **efficient** and **modular** KV cache streaming library, with **optimizations for fast streaming**
- **1. Buffered Transfers**

- An **efficient** and **modular** KV cache streaming library, with **optimizations for fast streaming**
-

1. Buffered Transfers 2. Layer-by-layer prompt cache streaming

- An **efficient** and **modular** KV cache streaming library, with **optimizations for fast streaming**
-

1. Buffered Transfers 2. Layer-by-layer prompt cache streaming

3. Token computation and streaming overlap

Common requirement

- 1. Prompt-token disaggregation
- 2. Microbatch swapping
- 3. KV cache replication and fault-handling mechanism

The DéjàVu system

Supports: **disaggregation, KV cache swapping, fault-tolerance**

Evaluation

DéjàVu disaggregation

- Baseline-X: FasterTransformer with X machines
- DejaVu-X-Y: Disaggregation with X machines for prompt, Y for token

Imsys dataset 40

Conclusion

Bimodal prompt vs per-token generation latency

Inefficient usage of GPU memory

Statefulness and inefficient failure handling

Challenges DéjàVu Solutions

Prompt-token disaggregation

KV cache replication and fault-handling mechanism

Conclusion

Bimodal prompt vs per-token generation latency

Inefficient usage of GPU memory

Statefulness and inefficient failure handling

Challenges DéjàVu Solutions

Prompt-token disaggregation

KV cache replication and fault-handling mechanism

DéjàVu github repo:

