
DéjàVu: KV-cache Streaming
for Fast, Fault-tolerant

Generative LLM Serving
Foteini Strati1,3, Sara McAllister2,3, Amar Phanishayee3, Jakub Tarnawski3, Ana Klimovic1

 1ETH Zurich, 2Carnegie Mellon University, 3Microsoft Research

Generative LLM Serving

Generative LLM Generative LLM Generative LLM

2

The quick brown foxPROMPT:

 jumpsTOKEN:

The quick brown fox
jumps

 over

The quick brown fox
jumps over

 the

Generative LLM Serving characteristics

3

Generative LLM Serving characteristics

4

1. Is stateful:
● Generation at position i depends on tokens at positions [0, i-1]
● Results saved at a Key-Value cache to speed up computation

Generative LLM Serving characteristics

5

1. Is stateful
2. Has large memory footprint:

○ Model parameters
○ KV cache and other intermediate states

Generative LLM Serving characteristics

6

1. Is stateful
2. Has large memory footprint:

○ Model parameters
○ KV cache and other intermediate states

Inference is distributed across multiple GPUs with
tensor and pipeline parallelism

Challenges of distributed LLM serving
1. Difference in prompt and per-token generation latency leads to pipeline bubbles

2. Inefficient usage of GPU memory

3. No failure handling

7

Challenges of distributed LLM serving
1. Difference in prompt and per-token generation latency leads to pipeline bubbles

2. Inefficient usage of GPU memory

3. No failure handling

8

Prompt processing vs per-token generation latency

Due to the usage of KV cache, the time for prompt processing can be much higher than
per-token generation time

9

Prompt processing vs per-token generation latency

Due to the usage of KV cache, the time for prompt processing can be much higher than
per-token generation time

 Bubbles and resource underutilization in pipeline parallel setups

Bubble

10

Prompt processing vs per-token generation latency

Due to the usage of KV cache, the time for prompt processing can be much higher than
per-token generation time

 Bubbles and resource underutilization in pipeline parallel setups

Bubble

11

Problem: both prompt processing and
token generation on the same GPU

Challenges of distributed LLM serving
1. Difference in prompt and per-token generation latency leads to pipeline bubbles

2. Inefficient usage of GPU memory

3. No failure handling

12

Inefficient usage of GPU memory

time
KV1 KV2 KV3 KV4

GPU memory

13

Inefficient usage of GPU memory

time
KV1 KV2 KV3 KV4

GPU memory

14

Inefficient usage of GPU memory

time

KV1 KV2 KV3 KV4

GPU memory

15

Inefficient usage of GPU memory

time

One microbatch is processed at a time.

However, the KV cache of all microbatches
is kept in GPU memory!

16

Challenges of distributed LLM serving
1. Difference in prompt and per-token generation latency leads to pipeline bubbles

2. Inefficient usage of GPU memory

3. No failure handling

17

Latency without failures

18

Latency with a failure

19

Challenges of distributed LLM serving

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

2. Inefficient usage of GPU memory

3. No failure handling

20

Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

 Prompt-token disaggregation

2. Inefficient usage of GPU memory

3. No failure handling

21

DéjàVu Key Idea 1: Prompt-Token disaggregation

KV
cache

Dedicated GPUs for
Token generation

22

Dedicated GPUs for
Prompt processing

DéjàVu Key Idea 1: Prompt-Token disaggregation

KV
cache

Dedicated GPUs for
Token generation

23

Dedicated GPUs for
Prompt processing

How to minimize KV
cache streaming

overheads?

DéjàVu Key Idea 1: Prompt-Token disaggregation

KV
cache

Dedicated GPUs for
Token generation

24

Dedicated GPUs for
Prompt processing

How to minimize KV
cache streaming

overheads?

How to allocate
resources for prompt
processing and token

generation?

Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

 Prompt-token disaggregation

2. Inefficient usage of GPU memory

Microbatch swapping

3. No failure handling

25

DéjàVu Key Idea 2: Microbatch swapping

KV cache

26

DéjàVu Key Idea 2: Microbatch swapping

time

27

KV1 KV2

KV3 KV4 KV2

KV3

KV1

DéjàVu Key Idea 2: Microbatch swapping

time

28

KV1 KV2

KV3 KV4 KV2

KV3

KV1

How to best utilize PCIe
bandwidth to minimize

idle times?

Challenges and our proposed solutions

1. Difference in prompt and per-token generation latency leads to pipeline bubbles

 Prompt-token disaggregation

2. Inefficient usage of GPU memory

Microbatch swapping

3. No failure handling

KV cache replication and fault-handling mechanism

29

KV cache replication to CPU memory

+ efficient fault detection and recovery

DéjàVu Key Idea 3: KV cache replication

30

3. Statefulness and inefficient failure handling

Idea: Replicate the KV cache to persistent storage or remote CPU memory

Proposed solutions

How to minimize KV
cache streaming

overheads? How to efficiently
detect failures and

recover?

31

Common requirement

1. Prompt-token disaggregation

2. Microbatch swapping

3. KV cache replication and fault-handling mechanism

 They all require a fast and versatile KV cache streaming mechanism

32

● An efficient and modular KV cache streaming library, with optimizations for fast
streaming

DéjàVuLib

33

● An efficient and modular KV cache streaming library, with optimizations for fast
streaming

1. Buffered Transfers

DéjàVuLib

34

● An efficient and modular KV cache streaming library, with optimizations for fast
streaming

1. Buffered Transfers 2. Layer-by-layer prompt cache streaming

DéjàVuLib

35

● An efficient and modular KV cache streaming library, with optimizations for fast
streaming

1. Buffered Transfers 2. Layer-by-layer prompt cache streaming

 3. Token computation and streaming overlap

DéjàVuLib

36

Common requirement

1. Prompt-token disaggregation

2. Microbatch swapping

3. KV cache replication and fault-handling mechanism

 DéjàVu

 DéjàVuLib

37

The DéjàVu system

T-worker 1P-worker 1

Controller

Request handler

Fault detector & handler

llm

P1 KV

GPU CPU

P1 KV

llm

T1 KV

GPU CPU

T1 KV

P1 KV

T-worker 2

llm

T2 KV

GPU CPU

T2 KV

P2 KV

P-worker 2

llm

P2 KV

GPU CPU

P2 KV

tokens

request

Supports: disaggregation, KV cache swapping, fault-tolerance

More details in the paper 38

Evaluation

39

DéjàVu disaggregation

OPT-66B BLOOM-176B

● Baseline-X: FasterTransformer with X machines
● DejaVu-X-Y: Disaggregation with X machines for prompt, Y for token lmsys dataset

Up to 2x higher
throughput

40

https://huggingface.co/datasets/lmsys/lmsys-chat-1m

Conclusion

Bimodal prompt vs per-token generation latency

Inefficient usage of GPU memory

Statefulness and inefficient failure handling

Prompt-token disaggregation

Microbatch swapping

KV cache replication and fault-handling

mechanism

Challenges DéjàVu Solutions

41

Conclusion

Bimodal prompt vs per-token generation latency

Inefficient usage of GPU memory

Statefulness and inefficient failure handling

Prompt-token disaggregation

Microbatch swapping

KV cache replication and fault-handling

mechanism

Challenges DéjàVu Solutions

42

DéjàVu github repo:

