Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach

Slobodan Mitrovic, Ilija Bogunovic, Ashkan Norouzi Fard, Jakub Tarnawski, Volkan Cevher

Highlights

- I. Submodular maximization in the streaming setting with robustness to removals.
- II. Constant-factor guarantee for any number of removals.
- III. Uses only at most polylog more space compared to the optimum.

Setup

Submodularity of a set function $f: 2^V \rightarrow \mathbb{R}_{\downarrow}$:

 $f(X \cup \{e\}) - f(x) \ge f(Y \cup \{e\}) - f(Y)$

STAR-T Algorithm

Structure of the robust set **S**:

- # of **partitions**: log k
- partition *i* contains: $(k/2^i)$ buckets with at most 2^i items

Streaming Algorithm to create **S**:

- add the item *e* to the first non-full bucket *B* if

 $f(e|B) \geq \tau/2'$

i : partition of the bucket B

whenever $X \subseteq Y$ and $e \notin Y$.

Submodular maximization under cardinality constraint k:

 $OPT(X, k) := \arg \max f(Y)$ $Y \subseteq X : |Y| = k$

The elements of V arrive in the streaming fashion in arbitrary order.

An arbitrary set $E \subseteq V$ is **removed** from V after the stream ends.

Robust monotone submodular maximization: find $S \subseteq V$ such that

1. $|S| \leq m$, and

2. $f(OPT(S \setminus E, k)) \ge c \cdot f(OPT(V \setminus E, k))$

for a parameter *c* and any *E* **not known a priori**.

Main result

- [MKK17]: Algorithm with c=0.499 and $m=\tilde{O}(k | E|)$. \bullet
- [BMKK14]: If $E=\emptyset$, algorithm with c=0.499 and $m=\tilde{O}(k)$. lacksquare

Our result:

Algorithm with c=0.148 and $m=\tilde{O}(k + |E|)$.

T: threshold value that depends on *f(OPT(V\E, k))* $(f(OPT(V \mid E, k)))$ is approximated by extending the techniques of [BMKK14])

- if such bucket does not exist discard the item.

Query Stage:

- for a given **E** return **k** elements greedily selected from **S** \ **E**

Set S

Numerical results

Robust dominating set:

Applications

Robust dominating set

Find a set of nodes S of size at most *t* that maximizes $|\mathcal{M}(OPT(S \setminus E, k)) \cup OPT(S \setminus E, k)|$ $\mathcal{M}(A)$: denotes all the neighborhood nodes of nodes in A

Interactive personalized movie recommendation:

Given a feature vector u of a user and feature vectors v_{τ} for a set of movies M, find a set of movies $S \subseteq M$ that maximizes (1- α) $\sum_{z \in S} \langle u, v_z \rangle + \alpha \sum_{m \in M} \max_{z \in S} \langle v_m, v_z \rangle$

The set of movies S is then used to provide, on the user's request, movies with specific properties (genre, year, not-seen, etc). The movies NOT falling in the category of the user's request are treated as the set *E*.

Setting

First phase: select *S* from the stream

Interactive personalized movie recommendation:

<u>Second phase</u>: given *E*, run Greedy to approximate OPT(S\E, k)

[first name].[last name]@epfl.ch

References

[MKK17] B. Mirzasoleiman, A. Karbasi, A. Krause, *Deletion-Robust* Submodular Maximization: Data Summarization with "the Right to be Forgotten", ICML 2017 [BMKK14] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, A.Krause, Streaming submodular maximization: Massive data summarization on the fly, SIGKDD 2014