A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem

Ola Svensson
Jakub Tarnawski
László A. Végh

Subject: Held-Karp LP relaxation

Variables: \(x_{uv} \) = times we traverse edge \((u, v)\)

Minimize: \(\sum_{e \in E} w(e) x_e \)

Subject to: \(x(e^+)^S = x(e^-)^S \) for all \(e \in E \) (for a cycle \(S \))

where \(x(e) \) = 1 or 0

What is the integrity gap?

Local-Connectivity ATSP

[Svensson’15]:
- Defined new, easier problem called Local-Connectivity ATSP
- Reduced \(O(1) \)-apx of ATSP to Local-Connectivity ATSP
- Solved Local-Connectivity ATSP for unweighted graphs (easy part)\footnote{Svensson, 2015}

Thus: \(O(1) \)-apx of ATSP for unweighted graphs

Then we [16] solved Local-Connectivity ATSP for graphs with two different edge weights. But could not generalize even to three weights...

Make the instance laminarily-weighted

Solve dual, uncross, use complementary slackness, and rewrite objective function to get the following structure:

\[w(e) = \sum_{S \in \mathcal{L}} y_S \]

(\(\mathcal{L} \) = laminar family of cuts)

- Primal LP value:
 \[\sum_{e \in E} w(e) x_e = 2 \cdot \sum_{S \in \mathcal{L}} y_S \]

Irreducible \(\Rightarrow \) close to Hamiltonian

If all sets are close to Hamiltonian, then we have enough structure to solve Local-Connectivity ATSP using previous work, circulations, ...

Future work

- Our \(\alpha \)p ratio is not close to 2. At all. Need new ideas to get much better approximation algorithms for ATSP.
- Bottleneck ATSP problem: find tour (visit each vertex exactly once) with minimum max edge weight. Beat \(O(\log n / \log \log n) \)-apx.
- Thin tree conjecture: for every \(K \), there is \(O(1) \)-apx of \(K \)-approximation for Bottleneck ATSP
- Node-weighted symmetric TSP, i.e. \(w(u, v) = f(u) + f(v) \): beat 1.5-apx.

Strategy: contract, recurse, lift, complete

- Set dual value for new singleton to support payment for patching up when lifting the tour later, i.e. set it to max possible length of a red path below
- LP-value = \(OPT - drop \)
- \(S \) is reducible \(\Rightarrow \) large drop

Return an approximate solution: \(w(\text{tour}) \leq a \cdot OPT \)