

Efficiently Computing Similarities to Private Datasets

Zinan Lin Microsoft Research

Sepideh Mahabadi Microsoft Research

Sandeep Silwal MIT -> Wisconsin Madison

Our results

- What are the tradeoffs between accuracy and privacy?
- Privacy measured with respect to (ε, δ) -Differential Privacy
- (M, A) means $\mathbb{E}[|\mathsf{True} \mathcal{D}(y)|] \leq M \cdot \mathsf{True} + A$ Hiding ε and log terms d = Dataset dimension

<i>x</i> , <i>y</i>)	Our Error	Prior Error	Ref.
$-y\ _1$	$\alpha, d^{1.5}/\sqrt{\alpha}$	0, poly(<i>n</i> , <i>d</i>)	Bounded data [Huang, Roth '14]
$-y\ _{2}$	α , $1/\alpha^{1.5}$	0, poly(<i>n</i> , <i>d</i>)	Bounded data [Huang, Roth '14]
$\ x-y\ _2$	0, α	0, α	Prior algo slower [Wagner et al. '23]
$\frac{1}{ x - y _2}$	0, α		

Sneak Preview of Algorithms

- $||x y||_1 = \sum_i |x_i y_i| \implies$ Sufficient to solve 1D case
 - $e^{-\|x-y\|_2}$: Prove novel dimensionality reduction result which preserves kernel sums
 - $\frac{1}{1+\|x-y\|_2}$: Reduce this kernel to the case of $e^{-\|x-y\|_2}$
 - Use function approx. theory to write $\frac{1}{1+z}$ as a sublinear number of terms that look like e^{-z}

Jakub Tarnawski Microsoft Research

Experiments

Private Image Classification

- Use private similarity data structures to assign labels
- Similar measured on embeddings of images
- Embeddings curated from a large public model

No deep learning required!

 $> 10^3$ x faster than SOTA (which uses deep learning) magic) for comparable acc.

Sublinear Algorithms