Piper: Multidimensional Planner for DNN Parallelization

Zillion-dollar question: how to train DNNs efficiently?

Dimension 1:
- **Data parallelism:**
 - Replicate model on every worker
 - Train on disjoint samples

 But:
 - Communication (weight resync) can be expensive
 - SOTA models are huge and don’t fit on a single worker

Dimension 2:
- **Model parallelism:**
 - Partition the model
 - Transfer intermediate activations between workers

To get high worker utilization, use **pipelining:**
- Once the first sample goes to Machine 2, Machine 1 can start processing the second sample, etc.

Dimension 3:
- **Tensor (model) parallelism (intra-layer):**
 - Can also split individual layers and operators for the same microbatch/sample
 - Think of matrix multiplication: many ways to split matrices
 - Scheme proposed by nVidia for Transformers (Megatron-LM)

 Advantages:
 - does not increase batch size
 - with only data parallelism and pipeline model parallelism, batch size × microbatch size × number of devices
 - can have smaller memory usage
 - indispensable if single layer doesn’t fit on 1 device

Dimension 4:
- **Memory-saving optimizations** such as activation recomputation

Prior work

Approach 1:
- Treat objective function as black box, e.g. measure time of 10 training steps
- Optimize it with generic heuristics such as Reinforcement Learning or MCMC
 - [Mirhoseini et al. 2017, 2018]
 - [Gao et al. 2018]
 - [Addanki et al. 2019]
 - [Zhou et al. 2019, 2020]
 - [Paliwal et al. 2020]

Approach 2 (ours):
- Build cost model that closely reflects real performance
- Solve resulting “offline” optimization problem with principled algorithmic techniques
 - [Jia et al. 2018, 2019]
 - [Narayanan et al. 2019, 2020]
 - [Tarnawski et al. 2020]

Our two-level approach

Huge search space, incl. finding good tensor parallelism schemes for entire DNN operator graph

- **Find good tensor parallelism schemes for individual layer types**
- **Combine them well, together with the other modes of parallelism**

Our main contribution: Piper, an efficient algorithm for this problem

Our findings

- We evaluate Piper on several modern DNN workloads
- Piper is efficient
- Piper beats out planners from prior work (PipeDream, PipeDream-2BW)
 - Tensor parallelism very useful with very large number of devices
 - Heterogeneous stages are advantageous, even for very repetitive DNNs

Future work

- Piper can handle PipeDream and PipeDream-2BW schedules; TODO: take pipeline flushes into account
- Most importantly, solve THIS problem

Some figures courtesy of PipeDream / Megatron

Jakub Tarnawski, Deepak Narayanan, Amar Phanishayee
Microsoft Research