J &
- _ . . K SN
P| p er. Jakub Tarnawski, Deepak Narayanan, Amar Phanishayee >0

ﬁ, NEURAL INFORMATION
Multidimensional Planner for DNN Parallelization Microsoft Research

"’?. PROCESSING SYSTEMS

Zillion-dollar question: how to train DNNs efficiently? Prior work Piper algorithm

_ _ Approach 1: Approach 2 (ours): -
Dimension 1: « Treat objective function as black box, e.g. + Build cost model that closely reflects . Layer-granularity computation graph (DAG) Input
Data parallelism: measure time of 10 training steps real performance . For each node (layer), a list of tensor
* Replicate model on every worker - Optimize it with generic heuristics such as + Solve resulting “offline” optimization parallelization schemes / memory-saving
* Train on disjoint samples Reinforcement Learning problem with principled algorithmic : optimizations

or MCMC techniques « Annotated with profiled / estimated runtimes,

But: . [Mirhoseini et al. 2017, 2018] . [Jia et al. 2018, 2019] memory usage etc.
« Communication (weight resync) Gao et al. 2018] 'Narayanan et al. 2019, 2020] Number of accelerators

can be expensive ‘Addanki et al. 2019] ‘Tarnawski et al. 2020] * Memory, network, batch size constraints
« SOTA models are huge Zhou et al. 2019, 2020]

and don't fit on a single worker Paliwal et al. 2020] .

No prior work addresses the entire dynamic
search space (with pipelining) programming output

Dimension 2:

Model parallelism:

« Partition the model

« Transfer intermediate activations
between workers

Partitioning of DAG into stages

For each stage:
* Degree of data parallelism
Our two-level approach - Degree of tensor parallelism
« Which tensor parallelism schemes are used
—< « Which memory-saving optimizations are used
Huge search space,

incl. finding good tensor parallelism schemes
for entire DNN operator graph

To get high worker utilization,

use pipelining:

» Once the first sample goes to
Machine 2, Machine 1 can start
processing the second sample, etc.

. maximize throughput, subject to memory constraints

e e e e e e e, ——— 1

Output stage

Our findings
Dimension 3:

Tensor (model) parallelism (intra-layer):

Can also split individual layers and operators for the same microbatch/sample

 Think of matrix multiplication: B
many ways to split matrices

Combine them well, - We evaluate Piper on several modern DNN workloads

together with the other
modes of parallelism

Find good
tensor parallelism scheme
for individual layer types

* Piper is efficient

* Piper beats out planners from prior work
(PipeDream, PipeDream-2BW)

2 | i | S . .
. Scheme proposed by nVidia "= | = , | Beyond the scope of this work: Our main contribution: Piper, « Tensor parallelism very u_seful with
for Transformers (Megatron-LM) | S E can use existing schemes an efficient algorithm very large number of devices
- | o (e.g. Megatron-LM for Transformers), = for this problem « Heterogeneous stages are advantageous,
i L] i human experts, or future algorithms even for very repetitive DNNs

Advantages:
« does not increase batch size
« with only data parallelism and pipeline model parallelism,
batch size =2 microbatch size - number of devices

« can have smaller memory usage
* indispensable if single layer How to optimally

doesn't fit on 1 device partition the model and
combine all dimensions?

s

\&—————————_——————————",

Future work

 Piper can handle PipeDream and PipeDream-2BW
schedules; TODO: take pipeline flushes into account

* Most importantly, solve THIS problem

Dimension 4:

Memory-saving optimizations such as activation recomputation
Some figures courtesy of PipeDream / Megatron

