
Piper:

Multidimensional Planner for DNN Parallelization

Zillion-dollar question: how to train DNNs efficiently?

Dimension 1:
Data parallelism:

• Replicate model on every worker

• Train on disjoint samples

But:

• Communication (weight resync)

can be expensive

• SOTA models are huge

and don’t fit on a single worker

Dimension 2:
Model parallelism:

• Partition the model

• Transfer intermediate activations

between workers

To get high worker utilization,

use pipelining:

• Once the first sample goes to

Machine 2, Machine 1 can start

processing the second sample, etc.

Jakub Tarnawski, Deepak Narayanan, Amar Phanishayee

Microsoft Research

Prior work

Approach 1:

• Treat objective function as black box, e.g.

measure time of 10 training steps

• Optimize it with generic heuristics such as

Reinforcement Learning

or MCMC

• [Mirhoseini et al. 2017, 2018]

[Gao et al. 2018]

[Addanki et al. 2019]

[Zhou et al. 2019, 2020]

[Paliwal et al. 2020]

Approach 2 (ours):

• Build cost model that closely reflects

real performance

• Solve resulting “offline” optimization

problem with principled algorithmic

techniques

• [Jia et al. 2018, 2019]

[Narayanan et al. 2019, 2020]

[Tarnawski et al. 2020]

Dimension 3:
Tensor (model) parallelism (intra-layer):

Can also split individual layers and operators for the same microbatch/sample

• Think of matrix multiplication:

many ways to split matrices

• Scheme proposed by nVidia

for Transformers (Megatron-LM)

Advantages:

• does not increase batch size

• with only data parallelism and pipeline model parallelism,

batch size ≥ microbatch size ⋅ number of devices

• can have smaller memory usage

• indispensable if single layer

doesn’t fit on 1 device

Dimension 4:
Memory-saving optimizations such as activation recomputation

How to optimally
partition the model and
combine all dimensions?

No prior work addresses the entire
search space (with pipelining)

Huge search space,
incl. finding good tensor parallelism schemes

for entire DNN operator graph

this work

Find good
tensor parallelism schemes

for individual layer types

Combine them well,
together with the other

modes of parallelism

Beyond the scope of this work:

can use existing schemes

(e.g. Megatron-LM for Transformers),

human experts, or future algorithms

Our main contribution: Piper,
an efficient algorithm
for this problem

Our two-level approach

• Layer-granularity computation graph (DAG)

• For each node (layer), a list of tensor
parallelization schemes / memory-saving
optimizations

• Annotated with profiled / estimated runtimes,
memory usage etc.

• Number of accelerators

• Memory, network, batch size constraints

Piper algorithm

dynamic
programming

• Partitioning of DAG into stages

• For each stage:

• Degree of data parallelism

• Degree of tensor parallelism

• Which tensor parallelism schemes are used

• Which memory-saving optimizations are used

maximize throughput, subject to memory constraints

Our findings

• We evaluate Piper on several modern DNN workloads

• Piper is efficient

• Piper beats out planners from prior work
(PipeDream, PipeDream-2BW)

• Tensor parallelism very useful with
very large number of devices

• Heterogeneous stages are advantageous,
even for very repetitive DNNs

Future work

• Piper can handle PipeDream and PipeDream-2BW
schedules; TODO: take pipeline flushes into account

• Most importantly, solve THIS problem

Some figures courtesy of PipeDream / Megatron

input

output

