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Online edge 

coloring

Given: graph with maximum degree Δ,
edges arrive online (adversarial order)

Assign color to each edge
to get a proper coloring and
minimize number of colors

Offline:
optimum is Δ or Δ + 1 colors [Vizing 1964]
NP-hard to distinguish [Holyer 1981]

Δ = 2

Greedy

• When edge arrives, assign smallest free color

• Uses 2Δ − 1 colors

• This is tight

Δ = 4

7 colors

Bar-Noy, Motwani, Naor (1992)

Δ = 4

7 colors

Lower bound:  impossible to beat 2Δ − 1

Proof:
make lots of (Δ − 1)-stars, until there are Δ identical ones

However: need exp(Δ) vertices for this, so Δ ≤ 𝑂(log 𝑛)

? ?

What about Δ > 𝜔(log 𝑛)?

Question: can better bounds be achieved?

Conjecture: there is a randomized algorithm

using 1 + 𝑜 1 Δ colors

State of the art        (everything is for Δ > 𝜔(log 𝑛))

random-order arrival:

• 1.26Δ colors
[Bahmani, Mehta, Motwani 2012]

• 1 + 𝑜 1 Δ colors
[Bhattacharya, Grandoni, Wajc 2021]

vertex arrival:

• bipartite one-sided: 1 + 𝑜 1 Δ colors
[Cohen, Peng, Wajc 2019]

• general: 1.9Δ colors
[Saberi, Wajc 2021]

Δ + 𝑜 Δ ??
conjectured

Δ + Δ
best known hardness

≈ 2Δ ??
conjectured det. hardness

2Δ − 1
Greedy

[Bar-Noy, Motwani, Naor 1992] [Bar-Noy, Motwani, Naor 1992]

[Cohen, Wajc 2018]

Our result:  randomized algorithm that uses 
𝑒

𝑒−1
Δ ≈ 1.58Δ colors

Δ
degree bound

Partial progress on special cases:

Oblivious adversary: adversary fixes graph and edge order, then we flip our coins

We want to match each edge with prob. = Τ1 𝐶

Let’s satisfy this inductively!

Tree case
How to solve online matching on really treelike instances: trees? 

P 𝑢 unmatched = 1 −
𝑑𝑢

𝐶
P 𝑣 unmatched = 1 −

𝑑𝑣

𝐶

P 𝑢 unmatched ⋅ P 𝑣 unmatched ⋅ 𝑝 = ൗ1 𝐶

𝑝 ≔
𝐶

(𝐶 − 𝑑𝑢)(𝐶 − 𝑑𝑣)

Algorithm:

If 𝑢 or 𝑣 matched,
we can’t match 𝑒.

If 𝒖 and 𝒗
unmatched,
we match 𝑒
with prob. 𝑝

𝑒 arrives

𝑢 𝑣

𝑑𝑢 𝑑𝑣

independent!

We just keep this algorithm for the general treelike case!

General treelike case – challenge

𝑒 arrives

𝑢 𝑣

𝑑𝑢 𝑑𝑣

independent Obstacle for analysis:
events
“𝑢 already matched”,
“𝑣 already matched”
(upon arrival of 𝑒)
are not independent

Still want prob. ≈ Τ1 𝐶 for each edge

But correlation is over long paths, and we show that it decays!

Analysis inspired by [Weitz 2006]

online edge coloring 
using 𝐶 colors

Reduction 1 (to matching)

(i.e. partition graph into matchings)

If Δ > 𝜔(log 𝑛), enough concentration
to finish in 𝐶 + 𝑜(𝐶) iterations

Edge matching game

Objective: show that 𝑒 = 𝑢, 𝑣 gets matched with prob. ≳ Τ1 𝐶

Up to distance 𝑔,
we have a tree 𝑇.
Beyond that,
no control.

Worst-case 
analysis: we 
cede control of 
boundary to an 
adversary!

Edge matching game played on 𝑇:
• when boundary edge arrives,

adversary matches or not (can randomize)
• when internal edge arrives, we follow the algorithm
• adversary plays to minimize P(𝑒 matched)

Observation 1: true probability ≥ game probability
(that 𝑒 gets matched)
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labels = edge order

New objective: P 𝑒 matched in edge matching game ≥ Τ1 𝐶

Observation 2: w.l.o.g., edges arrive bottom-to-top

So red edges can be discarded from 𝑇

What is the optimal strategy for the adversary?

Monotonicity

Monotonicity:
when 𝑔 even, it is optimal to NOT MATCH boundary edges

Note: this is oblivious! Can make all decisions before the game

u v
e

𝑔

minimize
maximize maximize maximize

minimize minimize

maximizemaximize maximize

minimize minimize minimize

edges arrive 
bottom-to-top

Adversary wants to 
minimize prob. of 𝑒,
so intuitively it’s 
best to maximize 
prob. of level-1 
edges, minimize 
level-2 edges, etc.

ADVERSARY’S
OPTIMAL 
STRATEGY

Fixing this strategy, new objective: P 𝑒 matched ≥ Τ1 𝐶

when boundary is removed and edges arrive bottom-to-top

Events “𝑢 already matched”, “𝑣 already matched”
(upon arrival of 𝑒) are again independent

On the other hand, P 𝑢 unmatched ≠ 1 −
𝑑𝑢

𝐶

as we lost the Τ1 𝐶 probabilities for every edge:
e.g. for blue edges they are in fact 0.
But as we go up the tall tree, probs contract towards Τ1 𝐶…

Tree recurrences 𝑤

𝑤1 𝑤2 𝑤3

Imagine complete Δ-ary tree

𝑞𝑤 ≔ P(𝑤 is not matched from below)

We like edge probabilities ≈ Τ1 𝐶

i.e. we like 𝑞𝑤 ≈ 1 − ΤΔ 𝐶

so define error 𝜖𝑤 ≔ 1−
𝑞𝑤

1−
Δ

𝐶

𝑞𝑤 =ෑ

𝑖=1

Δ

P 𝑤,𝑤𝑖 not matched | 𝑤,𝑤1 , … , 𝑤, 𝑤𝑖−1 not matched

= ෑ

𝑖=1

Δ

1 − 𝑞𝑤𝑖
⋅

𝐶

(𝐶 − 𝑖 + 1)(𝐶 − Δ)

Some rewriting gives:

𝜖𝑤 = 1 −ෑ

𝑖=1

Δ

1 +
1

𝐶 − 𝑖
⋅ 𝜖𝑤𝑖

𝜖𝑜𝑙𝑑

≈ 1 − exp 

𝑖=1

Δ
1

𝐶 − 𝑖
⋅ 𝜖𝑜𝑙𝑑

≈ − log
𝐶

𝐶 − Δ
⋅ 𝜖𝑜𝑙𝑑

≈ exp
1

𝐶 − 𝑖
⋅ 𝜖𝑜𝑙𝑑

So, as we go one level up:

𝜖 → − log
𝐶

𝐶 − Δ
⋅ 𝜖

log
𝐶

𝐶−Δ
< 1 iff 𝐶 >

𝑒

𝑒−1
⋅ Δ

If height 𝑔 of tree large enough (𝜔(1)),
then 𝜖𝑢, 𝜖𝑣 ≈ 0

# of 𝑔-cycles containing some edge in org graph ≤ Δ𝑔−2

Probability that such a cycle survives subsampling ≤ ൗΔ′
Δ

𝑔

So expected number of surviving cycles ≤ Δ′ 𝑔/Δ2:
very small if Δ′ 𝑔 < 𝑜(log 𝑛);   think 𝑔, Δ′ = 𝜔(1)

same online matching,
but in locally treelike graphs

Effects:
• Each vertex has degree ≤ Δ′ w.h.p.

• Most edges have no short cycles Why?

Reduction 2 (subsampling)

a version of online matching where every edge 
must be matched with prob ≥ Τ1 𝐶


