Matching is in Quasi- \mathcal{NC}

Ola Svensson, Jakub Tarnawski

Theory of Computation Lab **COLE POLYTECHNIQUE**

FÉDÉRALE DE LAUSANNE

Perfect Matching

- ▶ Perfect matching problem: given graph G, determine if it has a perfect matching
- ► We can also: find a perfect matching, find a maximum matching, find min-weight perfect matching (if weights are small)
- ► Basic problem in graph theory and algorithms

The framework

 $w_1 \mid 0 \dots 0 \mid w_2 \mid 0 \dots 0 \mid \dots \mid w_{\ell-1} \mid 0 \dots 0 \mid w_\ell$

► We concatenate multiple weight functions w_i , each from a small and simple set \mathcal{W}

 \blacktriangleright Polynomial-time deterministic algorithm known since the '60s

Parallel complexity

- ► Class \mathcal{NC} : polylog n time, poly(n) processors
- ► Completely parallelizable problems
- ▶ Perfect matching is in RANDOMIZED \mathcal{NC}
- **Do we need the randomness?** (is perfect matching in \mathcal{NC} ?)
- ► Lots of interest
- Known for special graph classes: strongly chordal, planar bipartite, graphs with small number of perfect matchings, regular bipartite, P₄-tidy, dense, convex bipartite, claw-free, incomparability graphs...

Matrix approach

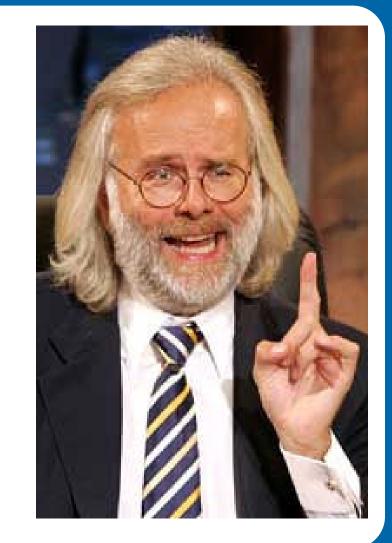


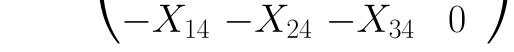
- ► As we add new functions, think about set of min-weight matchings
 ► Begin from zero weight function; all perfect matchings are min-weight (their set =: F₀)
 ► Get decreasing sequence of sets of matchings
 F₀ ⊇ F₁ ⊇ F₂ ⊇ ... ⊇ F_ℓ
 - $F_i = \operatorname{argmin}\{\langle w_i, x \rangle : x \in F_{i-1}\}$
- ► The concatenation is isolating if $|F_{\ell}| = 1$ ► Just check all $n^{O(\log^2 n)}$ weight functions of this form :)

Main claim

Some $w_i \in \mathcal{W}$ will make F_i two times smaller than F_{i-1} (in some sense)

- ► In bipartite case, look at length of shortest cycle in the support of F_i it doubles!
- ► Short "alternating" cycles are being removed
- ► One function from \mathcal{W} can remove n^4 many
- ► No cycles of length $\leq 2^i \implies$ only n^4 cycles of length $\leq 2^{i+1}$
- \blacktriangleright In general case, progress measure more involved





▶ Build Tutte's matrix T(G)

▶ Tutte's Theorem: det $T(G) \neq 0 \iff G$ has a perfect matching

Randomized \mathcal{NC} algorithm

Due to Mulmuley, Vazirani and Vazirani (1987)

► Introduce a weight function!

 $w: E \to \mathbb{Z}_+$ is **isolating** if there is unique perfect matching M with minimum w(M)

- ► In T(G), substitutte $X_{uv} := 2^{w(u,v)}$
- ▶ If w is isolating, then Tutte's Theorem still holds
- ► Isolation Lemma: assign polynomial weights randomly in $\{1, 2, ..., n^2\}$, then w isolating w.h.p.!

Algorithm

- ► Sample w (the only random component)
- ► Compute determinant (possible in \mathcal{NC})
- ► Answer YES iff it is nonzero

Polyhedral perspective

- \blacktriangleright Consider *convex hull* of min-weight perfect matchings
- \blacktriangleright It is a face of the perfect matching polytope
- \blacktriangleright Can be described by:
- ► Subset of edges
- **Laminar** family of tight odd-cuts
- \blacktriangleright Use this family to define measure of progress
- Divide-and-conquer argument to isolate matchings in larger and larger parts of the graph

 $\begin{aligned} x(\delta(v)) &= 1 & \text{for } v \in V \\ x(\delta(S)) &\geq 1 & \text{for odd } S \subseteq V \\ x_e &\geq 0 & \text{for } e \in E \end{aligned}$

Derandomize the Isolation Lemma!

Challenge: deterministically get small set of weight functions (to be checked in parallel)
 We prove: can construct n^{O(log² n)} weight functions, with weights bounded by n^{O(log² n)}, such that for any graph on n vertices, one of them is isolating

► Can even do it without looking at the graph

Implies: matching is in quasi-NC (n^{polylog n} processors, polylog n time)
Generalizes the approach by Fenner, Gurjar and Thierauf (2015) for bipartite graphs
First step to derandomizing Polynomial Identity Testing?

