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Set function                              is

● Monotone: for any set X and element e,

● Submodular:  for any sets and element e

Matroid  of rank k:  non-empty family of sets satisfying

● Downward-closedness: 
● Augmentation: 

Examples: uniform matroid |S| ≤ k, partition matroid 

Streaming setting: Elements arrive on a stream and we have limited memory.

Fairness: Solution should be balanced with respect to some sensitive attribute.

● Each element has a color c encoding the sensitive attribute.
● V is partitioned into C disjoint color groups    .
● We are given a lower        and upper bound         (not constants) on the number 

of elements we can pick from each color c.

Applications: multiwinner voting, influence maximization, data summarization

Fair Matroid Monotone Submodular Maximization

 
(FMMSM)

Related work

 Special case of FMMSM with cardinality constraint:

● Celis et al. [2018]: tight (1 - 1/e)-approximation in centralised setting.
● El Halabi et al. [2020]: one-pass streaming algorithms with

○  tight 1/2-approximation with exponential in k memory 
○ 1/4-approximation with O(k) memory 

Monotone submodular maximization over two matroid constraints:
●  Garg et al., [2021]: 1/5.828-approximation one-pass streaming algorithm 

with O(k) memory.
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Our Results

A tight 1/2 - approximation 
algorithm with exponential 

memory.

What if we want to Use Less Memory?

It is not possible to use 
efficient memory even if 

we make multiple passes.

If we violate the lower 
bounds we can get a high 
solution with quadratic 

memory usage in two 
passes over the stream.

Empirical Results

 

● Greedy-Fair-Streaming:  a one-pass heuristic algorithm based on the first pass of 
our two-pass algorithm

Overview of Our Algorithm

First pass: Find any feasible solution

1. Find a solution in the matroid for each color independently.
2. Find a feasible solution in the union of these solutions.

Second pass: Improve the quality of the solution

1. Divide the feasible solution into two so that the lower bounds 
are violated by at most a factor two.

2. Extend these two sets by adding good elements to them without 
violating the upper bounds and the matroid constraint.

3. Return the best solution among the two.

How can we do this?

Matroid intersection
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https://github.com/google-research/google-research/tree/master/fair_submodular_matroid

Even with more violations, 
it is not possible to get 

efficient algorithms.


