Fair Matroid Monotone Submodular Maximization

\[
\max_{S \in \mathcal{I}, |e| \leq u_c} \sum_{c=1}^{C} (f(S) + f(V_c)) \quad \text{(FMMSM)}
\]

Set function \(f : 2^V \rightarrow \mathbb{R} \) is
- **Monotone:** for any set \(X \) and element \(e \),
 \(f(X \cup \{e\}) \geq f(X) \);
- **Submodular:** for any sets \(X \subseteq Y \) and element \(e \)
 \(f(X \cup \{e\}) - f(X) \geq f(Y \cup \{e\}) - f(Y) \);

Matroid \(\mathcal{I} \subseteq 2^V \) of rank \(k \):
- Non-empty family of sets satisfying
 - **Downward-closedness:** if \(A \subseteq B \) and \(B \in \mathcal{I} \), then \(A \in \mathcal{I} \);
 - **Augmentation:** if \(A, B \in \mathcal{I} \) with \(|A| < |B| \), then \(A + e \in \mathcal{I} \) for some \(e \in B \).

Examples: uniform matroid \(|S| \leq k \), partition matroid \(S \cap V_c \leq u_c \).

Streaming setting: Elements arrive on a stream and we have limited memory.

Fairness: Solution should be balanced with respect to some sensitive attribute.
- Each element has a color \(c \) encoding the sensitive attribute.
- \(V \) is partitioned into \(C \) disjoint color groups \(V_c \).
- We are given a lower bound \(\ell_c \) and upper bound \(u_c \) (not constants) on the number of elements we can pick from each color \(c \).

Applications: multiwinner voting, influence maximization, data summarization

Related work

- Special case of FMMSM with cardinality constraint:
 - Celis et al. [2018]: tight (1 - 1/e)-approximation in centralised setting.
 - El Halabi et al. [2020]: one-pass streaming algorithms with
 - tight 1/2-approximation with exponential in \(k \) memory
 - 1/4-approximation with \(O(k) \) memory

Monotone submodular maximization over two matroid constraints:
- Garg et al. [2021]: 1/5.828-approximation one-pass streaming algorithm with \(O(k) \) memory.

Greedy-Fair-Streaming: a one-pass heuristic algorithm based on the first pass of our two-pass algorithm

Our Results

Theorem 1.1. For any constant \(\eta \in (0, 1/2) \), there exists a one-pass streaming \((1/2 - \eta)\)-approximation algorithm for FMMSM that uses \(2^{O(k^{1+1/\eta})} \cdot k \cdot \log C \) memory, where
\[
\Delta = \min_{x \in \mathcal{I}} f(\{c\}) - f(\emptyset).
\]

What if we want to Use Less Memory?

It is not possible to use efficient memory even if we make multiple passes.

If we violate the lower bounds we can get a high solution with quadratic memory usage in two passes over the stream.

Even with more violations, it is not possible to get efficient algorithms.

Theorem 1.2. Any \((\log C)\)-pass streaming algorithm that determines the existence of a feasible solution for FMMSM with probability at least 2/3 requires \(\Theta(k, C)^{2^{O(1)}} \) memory.

Empirical Results

Theorem 1.3. There exists a two-pass streaming algorithm for FMMSM that runs in polynomial time, uses \(O(k \cdot C) \) memory, and outputs a set \(S \) such that:
1. \(S \) is independent,
2. \(|S|/2 \leq |S| \leq u_c \) for any color \(c \), and
3. \(f(S) \geq \Omega(T) \).

Theorem 1.4. There is no one-pass semi-streaming algorithm that determines the existence of a feasible solution for FMMSM with probability at least 2/3, even if it is allowed to violate the fairness lower bounds by a factor of 2 and completely ignore the fairness upper bounds.

References