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ATSP: definition

Given directed graphG = (V,E) with costs on edges
w : E → R+, find cheapest tour which visits all
vertices.

ICan visit vertices (even edges) multiple times.

IBest-known problem in combinatorial optimization.

IWhy asymmetric costs? Consider being a postman in
Lausanne...

Example
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An ATSP instance and its optimum solution (in red).

Linear programming relaxation

Write xe for the number of times we traverse edge e and

minimize
∑
e∈E

wexe

subject to x(δ+(v)) = x(δ−(v)) for all v ∈ V,
x(δ+(S)) ≥ 1 for all ∅ 6= S ( V,

xe ≥ 0 for all e ∈ E.
That is:

I x should be Eulerian,

I x should connect the entire graph.

Is this hard?

We want the cheapest x : E → R+ which touches every vertex and is:

Eulerian connected

integral

LP relaxation
of ATSP

min-cost
cycle cover

minimum
spanning tree

ATSP

Everything in the diagram is easy, except for ATSP!

Approximation algorithms

IOPT = value of optimum solution

IAlgorithm A is an α-approximation if w(A(G)) ≤ α ·OPT for every G

IWhat is the best approximation ratio possible?

Integrality gap

IOPTLP = value of LP relaxation

IClearly OPTLP ≤ OPT , but how good is this lower bound?

I Integrality gap = max ratio OPT/OPTLP : quality of the lower bound

IWhy bother?

IDesign of LP rounding algorithms

I Integrality gap ≤ α =⇒ exists α-estimation algorithm

I Integrality gap > α =⇒ exists no α-approximation with respect to this relaxation

Known results

IApproximation algorithms:

IO (log n/ log log n)-approximation algorithm
[AGM+ ’10]

I lower bound: 75/74-approximation is NP-hard
[KLS ’13]

I Integrality gap:

I upper bound: O(poly log log n) [AG ’14]

I lower bound: 2 [CGK ’06]

I Is there an O(1)-approximation algorithm?

Local-Connectivity ATSP

IFor unweighted graphs (all costs = 1): yes! [Sve ’15] showed:

INew, easier problem called Local-Connectivity ATSP

IReduction: if can approximate Local-Connectivity ATSP well, then can also approx-
imate ATSP well

ICan indeed approximate Local-Connectivity ATSP well for unweighted graphs

I [STV ’16]: can also do it for graphs with two edge costs

Future work

IFor what wider classes of graphs is there an O(1)-approximation? Even the case of three
edge costs is unsolved.

IWhat about the general case? Bridge the gaps!

ICan we get an algorithm which matches the known integrality gap upper bound?

I In the symmetric version: can we beat 1.5-approximation (a result from the 70’s)?


