
University of Wroc law
Department of Mathematics and Computer Science

Institute of Mathematics

specialty: theoretical mathematics

Jakub Tarnawski

A constant-factor approximation algorithm for the Asymmetric Traveling
Salesman Problem on graphs with zero-one edge weights

Master’s thesis
written under the supervision of
Prof. Andrzej Kisielewicz

Wroc law 2016

Abstract

The Traveling Salesman Problem is the task of finding a shortest cyclical tour which
visits all vertices of a weighted graph. We consider approximation algorithms for ATSP
– the directed version of the problem. There is a recent (Svensson 2015) constant-factor
approximation algorithm for ATSP on unweighted directed graphs. The result is obtained
through a reduction to a certain easier problem. In this thesis we solve this easier problem
for a wider class of directed graphs – ones with all edge weights being 0 or 1. This also
implies a better upper bound for the integrality gap of the Held-Karp relaxation related to
this problem.

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Graphs and tours . 7
2.2 Integrality of circulations . 8
2.3 The Held-Karp relaxation and its integrality gap 9
2.4 Local-Connectivity ATSP . 10
2.5 A constant-light algorithm for unit weights . 11

3 Our results 13

4 Components Vi with x?(δ+(Vi)) = 1 15

5 The general case 15

6 Further directions 22

References 22

4

1 Introduction

The traveling salesman problem (TSP) – one of finding the shortest cyclical tour which visits all
vertices in a graph with weights (costs) on edges1 – is probably the most well-known question in
combinatorial optimization. It is also a classical NP-complete problem.2 This means that there
is probably no exact algorithm which solves it in polynomial time. There are several methods of
dealing with such hardness. One of the main approaches – especially in theoretical considerations
– is by approximation algorithms, i.e., effective algorithms whose answer is provably never
much worse than the optimum. We focus on such algorithms in this thesis. We will say that
an algorithm for the traveling salesman problem is a β-approximation if its returned route is
always at most β times more expensive than the optimum.3

Because the version of the problem where weights on edges are arbitrary and we require
that each vertex be visited exactly once does not admit any nontrivial approximation algorithm
(and is arguably unnatural), we instead consider a version where each vertex may be visited
multiple times. We can equivalently say that each vertex is visited once, but we assume that
the graph is complete and the edge weights satisfy the triangle inequality.

As a basic example, we can give a 2-approximation algorithm for the symmetric version
of the problem (where the graph is undirected): find a minimum spanning tree and take its
each edge twice. The subgraph so obtained is connected and Eulerian; its Eulerian cycle visits
all vertices, so it is an admissible solution. Its cost is at most twice the cost of the minimum
spanning tree. On the other hand, the optimum solution also contains some spanning tree, so
its cost is at least that of the minimum spanning tree. Therefore our solution is at most 2 times
worse than the optimum.

A better algorithm was given in 1976 by Christofides [Chr76]. It is almost as short and
clean: the idea is to start with a minimum spanning tree, and then fix the degrees of the odd-
degree vertices by connecting them with paths (pairing them up in an optimal way). One then
shows that this is a 3/2-approximation for the symmetric case. Interestingly, this approximation
factor remains the best known for the general case until today, and improving it is a major open
problem in combinatorial optimization.

It was only recently that better algorithms were developed for the special case where the
graph is also unweighted: in 2011, Oveis Gharan, Saberi and Singh [GSS11] gave a (3/2 − ε)-
approximation, with ε of the order of 10−24. A significant improvement was then obtained by
Mömke and Svensson [MS11] (1.461), Mucha [Muc12] (1.444) and Sebő and Vygen [SV14] (1.4).

The asymmetric version (where the graph is directed, so that going from u to v can be much
more expensive than from v to u), which we will focus on, appears to be significantly harder
than the symmetric one. The oldest known nontrivial approximation algorithm for it was given
by Frieze, Galbiati and Maffioli [FGM82] in 1982; it is a (log n)-approximation4. An asymptotic
improvement over this was achieved only in 2010 by Asadpour et al. [AGM+10], who gave an
O(log n/ log logn)-approximation. Here, the major open problem is to show an algorithm with
a constant approximation guarantee. On the hardness side, the best known result is that it is
NP-hard to get a 75

74 -approximation [KLS15].5

Most modern approaches to both the symmetric and the asymmetric version involve solving a
linear programming relaxation and then using its optimum solution to guide the algorithm. This
linear program, called the Held-Karp relaxation, is such that its integral solutions correspond

1For all formal definitions, refer to Section 2. Section 1 serves as motivation and an informal overview.
2Formally, its decision version is NP-complete.
3Here β can be a constant or a function of the input.
4By convention, n = |V | is the number of vertices in the graph.
5Formally, the following decision problem is NP-hard: given a threshold t and a graph which either has a tour

of cost at most t or has no tour of cost at most 75
74
t, decide which one is the case.

5

to tours which visit all vertices. However, an optimum solution to the relaxation (which can be
found in polynomial time) is not necessarily integral, and it will often have lower value than the
integral optimum, thus providing only a lower bound. We are interested in a measure of quality
of the relaxation called its integrality gap, which is the maximum ratio between values of the
integral optimum and the fractional optimum. The best known lower bound for the integrality
gap of the Held-Karp relaxation in the asymmetric case is 2 [CGK06], and this is believed to
be close to the truth; however, the best known upper bound is O(poly log log n) by recent work
of Anari and Oveis Gharan [AG15]. Note that this gives a polynomial-time algorithm which
estimates the cost of the optimum tour within this factor (by just solving the linear program);
however, it does not translate into an efficient way of actually finding a tour within this factor
of the estimated value.

Before 2015, nothing was known about the special case of unweighted (directed) graphs.
In a recent major development, Svensson [Sve15] gave a constant-approximation algorithm for
this case. His argument consists of two components. The first is a black-box reduction to an
easier problem called Local-Connectivity ATSP. In this problem, instead of providing a tour
which connects the entire graph, one is only required to output a (not necessarily connected)
Eulerian set of edges which crosses each cut induced by a given partitioning of the vertices. The
trade-off is that instead of minimizing the cost of the tour, now one is forced to ensure that
the cost of each connected component of the solution is within some factor of what the linear
programming relaxation “pays” for this component (this property will be called lightness). The
second component of the result is a light algorithm for unweighted graphs, which is rather short
and natural.

In this thesis, we expand on that result and make progress towards the general problem by
providing a light algorithm for the “next best” class of graphs, namely, directed graphs where
every edge has weight 0 or 1 (Theorem 3.1). Using Svensson’s reduction, this implies both
a constant-factor approximation algorithm for ATSP on these graphs, and a constant upper
bound on the integrality gap of the Held-Karp relaxation in this case (Theorem 3.2).

To further motivate our result (as in: why this class of weight functions is the natural next
step), we note that, by Svensson’s result, it is easy to obtain an O(wmax/wmin)-approximation
in graphs where the maximum edge weight is wmax and the minimum is wmin. Therefore we
are looking to deal with situations where this ratio is not bounded – and indeed, it is the worst
when wmin = 0. We also remark that, for the Asymmetric Traveling Salesman Path Problem,
there is a simple example of a graph where the Held-Karp relaxation has an integrality gap of
2 (the best known lower bound) with only weights 0 and 1 [FGS13, v2].6

This thesis is based on ideas obtained in joint work with Ola Svensson and László A. Végh.
We also note that the result has already been generalized by Svensson, T. and Végh to any two
different edge weights [STV16]; however, they employ a different method, and the constants in
this thesis are lower.

The organization of the thesis is as follows. We start with formal definitions and a self-
contained introduction to the problem in Section 2, where we also dicuss the main tools used in
previous successful approaches and the new Local-Connectivity ATSP problem introduced by
Svensson. In Sections 3 to 5 we present our result – a solution to that problem for graphs with
zero-one weights – and its proof. Finally, we discuss open research directions in Section 6.

6The zero-one weight case was not considered for symmetric TSP, since there it immediately reduces to the
unweighted case.

6

2 Preliminaries

2.1 Graphs and tours

We assume that the reader is familiar with basic notions of graph theory. We consider a finite
weighted directed graph G = (V,E,w), where w : E → R+. If every edge has weight 1, we say
that the graph is unweighted. We use the terms “weight”, “cost” and “value” interchangeably.
Let us define the notion of tour using the standard characterization of Eulerian graphs:

Definition 2.1. By a (traveling salesman) tour in G we denote a multiset F ⊆ E of edges
which is connected (i.e., the graph (V, F) is connected) and Eulerian (i.e., each vertex v ∈ V
has its out-degree and in-degree equal).7 The cost of the tour is the quantity w(F) =

∑
e∈F w(e).

Note that vertices (and even edges) may be visited multiple times in a tour. We will assume
that the input graph G is strongly connected (which is clearly equivalent to it having a tour).
We can now define our main problem:

Definition 2.2. The Asymmetric Traveling Salesman Problem (ATSP) is defined as follows.
Given a strongly connected edge-weighted digraph G = (V,E,w), the task is to find a tour F in
G of minimum cost w(F).

Let us also introduce some additional notation:

• given subsets of vertices S, T ⊆ V , we denote the set of edges between them by δ(S, T),
i.e., δ(S, T) = {(v, w) ∈ E : v ∈ S,w ∈ T},

• for a subset of vertices S ⊆ V , its outgoing edges are denoted by δ+(S) and incoming
edges by δ−(S), i.e., δ+(S) = δ(S, V \ S), δ−(S) = δ(V \ S, S); internal edges are denoted
by E(S), i.e., E(S) = {(u, v) ∈ E : u, v ∈ S},

• given a subset of edges F ⊆ E, its indicator vector is denoted by χF ,

• we often shorten {v} to v, as in δ+(v),

• we call nonnegative vectors x : E → R+ flows, and often write xe rather than x(e),

• given a function f : A → R and a subset B ⊆ A of its domain, we write f(B) for∑
x∈B f(x) and f |B for the restriction of f to B,

• by the above, e.g. x(δ+(S)) denotes the sum of all x-flow going out of the set S, i.e., its
fractional x-outdegree.

Definition 2.3. We say that a polynomial-time algorithm ALG for ATSP is a β-approximation
if for every input graph G we have w(ALG(G)) ≤ β · w(OPT (G)), where ALG(G) is the tour
output by the algorithm and OPT (G) is a minimum-cost tour in G. We call OPT (G) the
(integral) optimum solution, and β – an approximation ratio of ALG.

A constant-factor approximation algorithm is a β-approximation for a constant β.

7That is, to describe a tour, one only needs to specify how many times each edge is traversed; the order in
which the edges appear in an Eulerian cycle is insignificant.

7

2.2 Integrality of circulations

We will find it useful to relax the notion of a tour to allow fractional solutions, since we can find
these in polynomial time by solving a linear program called the Held-Karp relaxation, which we
discuss in Section 2.3. Let us first introduce the fractional counterpart of a Eulerian multiset
of edges – a circulation:

Definition 2.4. We say that a flow x : E → R+ is a circulation if every vertex v ∈ V has its
fractional outdegree and indegree equal, i.e., x(δ+(v)) = x(δ−(v)).

Note that:

• integral circulations correspond to Eulerian multisets of edges,

• the constraint x(δ+(v)) = x(δ−(v)) is linear in the variables {xe}e∈E ,

• if x is a circulation, it satisfies x(δ+(S)) = x(δ−(S)) for any subset of vertices S ⊆ V .8

The typical problem about circulations is to find a minimum-cost integral circulation sat-
isfying certain integral lower and upper bounds (on vertices and/or edges). This problem is
polynomial-time solvable, which can be seen as a consequence of the fact that its polyhedron
is integral. We make this precise in the following theorem (cf. [Sch03, Corollary 13.10b and
Note 11.6a]):

Theorem 2.5. Consider a digraph G = (V,E). Let l, u : E → Z+ ∪ {∞} and L,U : V →
Z+ ∪{∞} be some integral lower and upper bound functions on edges and vertices, respectively.
Consider the polyhedron P corresponding to circulations in G satisfying these lower and upper
bounds, that is,

P = {x ∈ RE : l(e) ≤ xe ≤ u(e) for all e ∈ E, L(v) ≤ x(δ+(v)) = x(δ−(v)) ≤ U(v) for all v ∈ V }.

Then the polyhedron P (possibly empty) is integral, i.e., its each vertex x ∈ RE is integral (i.e.,
x ∈ ZE).

It is well-known that if a linear program is feasible and bounded, then the optimum is attained
at a vertex of the polyhedron. Algorithmically, this fact together with Theorem 2.5 implies the
following:

Corollary 2.6 (integrality of circulations). Let G, l, u, L, U, P be as above and w : E → R+

be a weight function. Given x′ ∈ P (i.e., x′ is a fractional circulation satisfying the degree
bounds), we can find an integral circulation x ∈ P whose weight (with respect to w) is no more
than that of x′, i.e.,

∑
e∈E wexe ≤

∑
e∈E wex

′
e. This can be done in polynomial time.

Proof. There are polynomial-time algorithms which can, given a cost vector w ∈ RE and a
description of a polyhedron P ⊆ RE , find a point x ∈ P where the linear objective function∑

e∈E wexe is minimized and x is a vertex of P – as long as P is bounded in the direction of
the vector −w 9 and nonempty. (See e.g. [LRS11, Theorem 2.1.6].) By Theorem 2.5, x is then
integral. Also, its weight is no more than that of x′ because x minimizes the weight.

8To get this, sum up x(δ+(v)) = x(δ−(v)) over all v ∈ S.
9Which the circulation polyhedron P is, since w ∈ RE+ and P ⊆ RE+.

8

2.3 The Held-Karp relaxation and its integrality gap

We will introduce a fractional relaxation for ATSP similarly as for the minimum-cost circulation
problem. Since ATSP is NP-hard, we do not expect to obtain an integral polyhedron in this
way; still, we will be interested to know how “non-integral” it is. The motivation is that if there
is an integral solution whose weight is within some factor β of the fractional optimum, then
we could hope to find such a good integral solution by first solving for the fractional optimum
and then “rounding” it to integrality in some way. Such rounding techniques have been very
successful in the theory of approximation algorithms.

The task is to express the conditions of being a tour using linear constraints. Being Eulerian
(or, in fractional terms, a circulation) is readily written as x(δ+(v)) = x(δ−(v)) for all v ∈ V
as before. As for connecting the entire graph, we can require every proper subset of vertices
S ⊂ V to have at least one outgoing edge with the following subtour elimination constraints:
x(δ+(S)) ≥ 1. Thus we arrive at:

Definition 2.7. Given G = (V,E,w), the Held-Karp relaxation for ATSP on G is the following
linear program:

minimize
∑
e∈E

wexe

subject to x(δ+(v)) = x(δ−(v)) for all v ∈ V,
x(δ+(S)) ≥ 1 for all ∅ 6= S (V,

xe ≥ 0 for all e ∈ E.

As a convention, we will always set x? to be an optimum fractional solution to the relaxation.
We denote its value

∑
e∈E wex

?
e by w(x?) for brevity.

Our algorithms will begin by computing x?. Note that there are exponentially many con-
straints of the second kind; however, this linear program can still be solved in time polynomial
in n [Sch03, Section 58.9]. It is again easy to see that integral solutions of the relaxation are
exactly the tours of G; the value w(x?) of x? is thus a lower bound for the integral optimum
(the minimum cost of a tour in G): w(x?) ≤ w(OPT (G)).

As indicated in the introduction, we will be interested in the quality (tightness) of this lower
bound, i.e., the ratio between the integral optimum value and the value of x?.

Definition 2.8. We define the integrality gap of the Held-Karp relaxation as a function of n to
be the supremum, taken over all graphs G = (V,E,w) of size n, of the ratio w(OPT (G))/w(x?),
where x? is a Held-Karp optimum for G.

Our relative lack of understanding of ATSP shows in the gap between the best known lower
and upper bounds on the integrality gap of the Held-Karp relaxation: they are 2 [CGK06] and
O(poly log log n) [AG15] respectively. Furthermore, the latter result is not constructive, i.e., it
does not yield an approximation algorithm with the same ratio; the best known approximation
ratio is O(log n/ log log n) [AGM+10].

Finally, since many modern algorithms utilize the “rounding” framework, their guarantees
are stronger, in that they are with respect to the Held-Karp lower bound instead of the integral
optimum. More precisely:

Definition 2.9. We say that a polynomial-time algorithm ALG for ATSP is a β-approximation
with respect to the Held-Karp relaxation if for every input graph G we have w(ALG(G)) ≤
β · w(x?), where ALG(G) is the tour output by the algorithm and x? is a Held-Karp optimum
for G.

9

Of course, any β-approximation with respect to the Held-Karp relaxation is also a β-approximation.
Conversely, most known β-approximations for ATSP (as well as for symmetric TSP) turn out
to also be (or can be made to be) β-approximations with respect to the Held-Karp relaxation.

2.4 Local-Connectivity ATSP

In a recent major contribution, Svensson [Sve15] showed a constant-approximation algorithm
for the important special case of unit weights (i.e., G is an unweighted digraph). This result is
based on a reduction of ATSP to an easier problem called Local-Connectivity ATSP, where the
global connectivity condition (that a tour should connect the entire graph) is somewhat relaxed.
We will first define the problem and then discuss its relationship with ATSP.

Definition 2.10. The Local-Connectivity ATSP problem is defined as follows. Given a (strongly
connected weighted) digraph G = (V,E,w) with an optimum Held-Karp solution x? and a par-
titioning V = V1 ∪ ... ∪ Vk of its vertices, the task is to find a function lb : V → R+ and an
Eulerian multiset of edges F ⊆ E such that:

• lb(V) ≤ w(x?),

• the set F crosses each cut induced by the partitioning, i.e., for each i = 1, ..., k we have
|F ∩ δ+(Vi)| ≥ 1,

• the function lb cannot depend on the partitioning V = V1 ∪ ... ∪ Vk.10

We say that a connected component G̃ of the subgraph (V, F) is α-light11 if its weight satisfies
the upper bound w(G̃) ≤ α · lb(G̃).12

Finally, we say that a polynomial-time algorithm for Local-Connectivity ATSP is α-light if
it always satisfies that each connected component G̃ of the graph (V, F) is α-light.13

To explain the definition, we remark that:

• lb stands for “lower bound”: since lb(V) ≤ w(x?) ≤ w(OPT (G)), the function lb intu-
itively encodes some way to distribute between vertices the lower bound on the cost of
any tour,

• the α-lightness condition is stronger than requiring w(F) ≤ α · lb(V)(≤ α · w(x?)), which
is what α-approximation (with respect to the Held-Karp relaxation) would entail,

• the connectivity requirement is relaxed with respect to ATSP: instead of having F connect
the entire graph (i.e., cross all cuts), we only specify k ≤ n cuts which it must cross,

• there is no such thing as an optimum solution to Local-Connectivity ATSP, which the
algorithm’s output could be compared to; because of this, we do not use the term approxi-
mation but rather define lightness. One could say that a variant of approximation is built
into the definition of the problem.

10One way to make this formal is to define solving Local-Connectivity ATSP as a two-stage process: first, the
algorithm is only given G and must output lb; then it is given the partitioning V = V1 ∪ ... ∪ Vk and it must
output F .

11Like the approximation ratio β, the parameter α can be a constant or a function of n.
12To shorten notation, G̃ is used here to denote both its vertex set and its edge set, as in: w(G̃) = w(E(G̃)) =∑
e∈E(G̃) w(e), lb(G̃) = lb(V (G̃)) =

∑
v∈V (G̃) lb(v).

13Svensson [Sve15] in fact defines Local-Connectivity ATSP somewhat differently, with a fixed lb function (and
a suggestion to consider others), but we need to make the definition more general.

10

We have kept saying that the new problem is no harder; we now back this claim up with a
proof.

Fact 2.11. If there exists an α-approximation for ATSP with respect to the Held-Karp relax-
ation [on some class of graphs], then there also exists an α-light algorithm for Local-Connectivity
ATSP [on that class of graphs].

Proof. We can define lb in any way such that lb(V) = w(x?) 14 and produce F using the α-
approximation for ATSP.15 Let us verify that this gives an α-light algorithm. Since F crosses
all cuts, it also crosses those induced by any given partitioning. As for lightness, we have only
one connected component G̃ = (V, F), and w(G̃) = w(F) ≤ α · w(x?) = α · lb(V) = α · lb(G̃).

However, it turns out that the two problems are actually equivalent up to constant factors!
The following is the main result of Svensson [Sve15]:

Theorem 2.12. If there exists an α-light algorithm for Local-Connectivity ATSP [on some
class of graphs], then:

• the integrality gap of the Held-Karp relaxation [on that class of graphs] is at most 5α,16

• for any ε > 0 there is a (9 + ε)α-approximation with respect to the Held-Karp relaxation
for ATSP [on that class of graphs].17

The reduction of Theorem 2.12 is general and works for any weight function. Unfortunately,
we do not know if there is a constant-light algorithm for the general case. However, there is a
rather natural 3-light algorithm for unit weights. We prove the following in Section 2.5:

Theorem 2.13. There exists a 3-light algorithm for Local-Connectivity ATSP on unweighted
graphs.18

By Theorem 2.12, this immediately implies:

Theorem 2.14. The integrality gap of the Held-Karp relaxation for ATSP on unweighted graphs
is at most 15. Furthermore, for any ε > 0 there is a (27 + ε)-approximation for ATSP on un-
weighted graphs (and it is with respect to the Held-Karp relaxation).

2.5 A constant-light algorithm for unit weights

In this section we prove Theorem 2.13. Our algorithm for zero-one weights is an extension of
this one, and it heavily builds on the techniques introduced here.

We give an overview of the approach first. The function lb(v) will be set to the value that
the fractional optimum x? “pays” for edges going out of v, which is equal to the fractional
degree of v in x? since the graph is unweighted. Our task is to round x? to integrality while
roughly respecting vertex degrees (which will guarantee lightness) and making sure that each
cut induced by the given partitioning is still crossed (fractionally, x? crosses each cut with at
least 1 unit of flow). We will use integrality of circulations (see Corollary 2.6) to accomplish
this. Unfortunately, we cannot use it directly by requiring a lower bound on the flow over a set

14E.g. we can put w(x?) on one vertex and 0 on the rest, or we can set lb(v) =
∑
e∈δ+(v) wex

?
e .

15We disregard the partitioning given to us.
16This holds even if the α-light algorithm does not run in polynomial time.
17Its running time may depend on 1/ε.
18This algorithm actually works for a broader class of weight functions (node-weighted metrics), but we ignore

this here.

11

of vertices, so instead we emulate the set with a single new vertex. More precisely, we modify
the graph and x? as follows: for every component Vi of the partitioning V = V1∪ ...∪Vk, we add
a new auxiliary vertex Ai, take 1 unit of flow passing through Vi, and redirect it to pass through
Ai. We scale down flow inside every component suitably so as to maintain that x? is still a
circulation. Now we can use integrality of circulations to select an arbitrary integral solution
y to the circulation problem with vertex-degree bounds 1 ≤ y(δ+(v)) ≤ dx?(δ+(v))e (which is
feasible since the modified x? satisfies these bounds). Note that we have y(δ+(Ai)) = 1 for each
i = 1, ..., k. Finally, we remove the auxiliary vertices, which forces us to reroute one path inside
each component Vi; this violates the degree bounds only by 1.

We proceed to describe the algorithm in more detail. First, we are given a strongly connected
digraph G = (V,E,w) (where w is identically 1) and a Held-Karp optimum x? for it. We define
the lb function as follows: lb(v) = x?(δ+(v)). It satisfies lb(V) = w(x?).

Now we are given a partitioning V = V1∪...∪Vk. Our task is to produce an Eulerian multiset
of edges F ⊆ E which is 3-light and crosses all the Vi-cuts (i.e., satisfies |F ∩ δ+(Vi)| ≥ 1 for
i = 1, ..., k). To get lightness, we will ensure that

|F ∩ δ+(v)| ≤ dx?(δ+(v))e+ 1 for each v ∈ V . (1)

If (1) is satisfied, then F is 3-light. To see this, note that for each v ∈ V

dx?(δ+(v))e+ 1 ≤ 3x?(δ+(v))

because x?(δ+(v)) ≥ 1, and thus for any connected component G̃ of (V, F) we have

w(G̃) =
∑
v∈G̃

|F ∩ δ+(v)| ≤
∑
v∈G̃

(
dx?(δ+(v))e+ 1

)
≤ 3

∑
v∈G̃

x?(δ+(v)) = 3 lb(G̃).

So our solution F should satisfy (1) and cross all Vi-cuts.
We begin by transforming G and x? into a new graph G′ and a circulation y? on G′. This is

done so as to reroute 1 unit of flow passing through Vi (i.e., a 1/x?(δ+(Vi)) fraction of that flow)
to pass through a new auxiliary vertex Ai; flow inside Vi is scaled down by a factor 1− 1

x?(δ+(Vi))

to obtain a circulation. Formally, we proceed as follows:

• each edge e = (u, v) – for u, v being in different components Vi – is replaced by adding
vertices Oe, Ie and edges (u,Oe), (Oe, Ie), (Ie, v),

• for each component Vi we add an auxiliary vertex Ai and edges (Ai, Oe) for every e ∈
δ+(Vi) and (Ie, Ai) for every e ∈ δ−(Vi),

• for each edge e inside a component Vi set y?e = x?e ·
(

1− 1
x?(δ+(Vi))

)
,

• for each edge e = (u, v) where u ∈ Vi, v ∈ Vj , i 6= j set:

y?(u,Oe) = x?e ·
(

1− 1

x?(δ+(Vi))

)
,

y?(Ai,Oe) =
x?e

x?(δ+(Vi))
,

y?(Oe,Ie) = x?e,

y?(Ie,v) = x?e ·
(

1− 1

x?(δ+(Vj))

)
,

y?(Ie,Aj) =
x?e

x?(δ+(Vj))
.

12

By construction, the flow y? is a nonnegative circulation in G′ satisfying y?(δ+(Ai)) = 1

for each i. It also has y?(δ+(v)) =
(

1− 1
x?(δ+(Vi))

)
· x?(δ+(v)) ≤ x?(δ+(v)) for any v ∈ Vi.

Therefore y? is a fractional circulation satisfying the following integral bounds on vertices:
y?(δ+(v)) ≤ dx?(δ+(v))e for all v ∈ V and y?(δ+(Ai)) = 1 for all i. By Corollary 2.6, we can
find in polynomial time an integral circulation y satisfying these bounds.

The next step is to map back from G′ to G. We do so by removing the vertices Ai (along with
adjacent edges) and contracting all vertices Oe and Ie. The integral circulation y is mapped to
a multiset F ′ of edges of G in the natural way. (To be more precise, a boundary edge e ∈ δ+(Vi)
is included in F ′ if the edge (Oe, Ie) was included in y.) Now, F ′ is almost Eulerian, except that
each auxiliary vertex Ai had one incoming and one outgoing edge in y, and now (in F ′) these
edges have been mapped back to boundary edges of Vi in such a way that the outdegree-indegree
balance has been violated for their endpoints in Vi. To fix this, we add one path Pi inside Vi
between the two affected vertices;19 the multiset of edges F = F ′ ∪

⋃k
i=1 Pi is Eulerian.

Why is F a good solution? It satisfies (1) because y satisfied y(δ+(v)) ≤ dx?(δ+(v))e and
adding the paths Pi can only increase the degree of any vertex by 1, since they are disjoint. To
see that each Vi-cut is crossed, let (Ai, Oe) be the only outgoing edge of Ai in the support of y;
by construction, y(Oe, Ie) ≥ 1 and thus e ∈ F ′ ∩ δ+(Vi).

This finishes our description of the algorithm.

3 Our results

In this section we present our main result: a constant-light algorithm for Local-Connectivity
ATSP on graphs with zero-one weights. Namely, we prove:

Theorem 3.1. There exists a 42-light algorithm for Local-Connectivity ATSP on graphs with
zero-one weights.

By Theorem 2.12, this immediately implies:

Theorem 3.2. The integrality gap of the Held-Karp relaxation for ATSP on graphs with zero-
one weights is at most 210. Furthermore, for any ε > 0 there is a (378 + ε)-approximation for
ATSP on graphs with zero-one weights (and it is with respect to the Held-Karp relaxation).

The remainder of the text (Sections 3 to 5) is devoted to the proof of Theorem 3.1.
Let us first discuss the main idea. In the unweighted setting, the property x?(δ+(v)) ≥ 1

implied that each vertex “paid” at least 1 unit of cost, and so increasing its degree by only a
constant resulted in a constant-light algorithm. Here, this is no longer the case: a vertex can
have arbitrarily small flow over 1-weight edges, so that it cannot afford even a single 1-weight
edge in a light solution. This forces us to group vertices together, so that they can support a
constant cost. It turns out that we can group them into cycles: since each cycle contains at least
one 1-weight edge (otherwise it can just be contracted), a suitable modification to the definition
of lb allows the cycles to play the role that single vertices play in the unit-weight algorithm.

We proceed to describe the algorithm in detail. Again, given a strongly connected digraph
G = (V,E,w) with weight function w : E → {0, 1} and a fractional optimum x?, we want to
solve Local-Connectivity ATSP on it. We describe the algorithm as a series of steps.

Step 3.1. We can assume that G contains no cycles of weight 0.

19One can show that without loss of generality each Vi is strongly connected, i.e., there is a path inside Vi
between any two vertices of Vi.

13

Otherwise we can contract them all – at the end, after we uncontract and need to fix the Eulerian
property of our solution, we can route paths on these cycles arbitrarily. We can also add each
0-cycle to the solution.

Step 3.2. Find a cycle cover C of cost at most w(x?).

To do this, first find an integral circulation with the constraint that the degree of each vertex is
at least 1. (Since x? is such a fractional circulation, by Corollary 2.6 we can also find an integral
one with no higher cost.) The support of this integral circulation decomposes into connected
components, which are connected Eulerian subgraphs. We will assume without loss of generality
that they are, in fact, simple cycles, and let C be the set of these cycles. At the end we will
explain how to lift this assumption (see Remark 5.6).

A crucial property is that, since we assumed that there are no 0-weight cycles, each cycle
in G (in particular, each cycle in C) has positive weight (i.e., it contains at least one 1-weight
edge).

Step 3.3. Define the lower bound lb:

lb(v) =
∑

e∈δ+(v)

x?ewe +
∑

e∈δ+(v)∩C

we,

lb(v) = lb(v)/2.

That is, lb(v) is the weighted outdegree of v in x?+χC . We have lb(V) ≤ w(x?)+w(C) ≤ 2w(x?).
The function lb is a version of lb scaled down so that lb(V) ≤ w(x?).

Crucially, since each cycle C is of positive weight, we get lb(C) ≥ w(C) ≥ 1.20

Step 3.4. Now we are given a partition V = V1∪ ...∪Vk. We begin by adding C to our solution.
We can assume that no cycle from C crosses any Vi-cut.

If a cycle does cross such a cut, we can e.g. merge the components it connects. Therefore each
component Vi is a union of some set of cycles from C.

Now, to obtain lightness, we are going to require that each cycle be light. This is enough:

Lemma 3.3. Let F be an Eulerian subgraph of G with F ⊇ C. Suppose that for each cycle
C ∈ C it satisfies

w(F ∩ (E(C) ∪ δ+(C))) ≤ α · lb(C).

Then F is α-light.

Proof. Since F ⊇ C, each connected component G̃ of (V, F) is (vertex-wise) the disjoint union
of a set of cycles C′ ⊆ C, therefore

w(G̃) =
∑
C∈C′

w(F ∩ (E(C) ∪ δ+(C))) ≤ α ·
∑
C∈C′

lb(C) = α · lb(G̃).

Broadly, we follow the same strategy as the 3-light algorithm for unweighted graphs: round-
ing x? to an integral circulation while forcing flow over boundaries of the components Vi.

20Note that lb(v) can be arbitrarily low, but lb(C) ≥ 1 – intuitively, this is why we group vertices into cycles.

14

4 Components Vi with x?(δ+(Vi)) = 1

Let us first outline how we can deal with components Vi that have small x?-flow over their
boundaries. The general algorithm presented in Section 5 can be seen as a generalization of
this. We describe this simplified case first mostly for intuition.

Here, we proceed as in the unit-weight algorithm: we reroute all flow to and from Vi through
an auxiliary vertex Ai. This means that after the rerouting, there is no flow inside Vi (since
x?(δ+(Vi)) = 1), and after an integral circulation is obtained, we are left with routing a single
path P through Vi.

Our procedure is as follows: temporarily contract each cycle C ∈ C inside Vi and route any
simple path between the required pair of vertices (such a path exists because Vi is strongly
connected). Then uncontract the cycles and route the path inside the cycles in the natural way.
Denote the cycles that appear on the path C1, ..., Ck, in order; for j = 1, ..., k let Pj be the
fragment of Cj that the path traverses, and let ej be the edge through which Cj is exited. Then
the path is P1, e1, ..., Pk, ek (where ek ∈ δ+(Vi) is the exiting edge). All cycles Cj are distinct.
Since for each j, lb(Cj) ≥ w(Cj) ≥ 1, we get

w(Pj) + w(ej) + w(Cj) ≤ 1 + 2w(Cj) ≤ 3 · lb(Cj),

which proves that for each cycle Cj we have (denoting the returned Eulerian subgraph by F)∑
e∈E(Cj)∪δ+(Cj)

χF (e) · w(e) ≤ 3 · lb(Cj) = 6 · lb(Cj).

Of course, if a cycle C ∈ C does not appear on any such path, then it also satisfies this bound
(even with 2 in place of 6). Overall, by Lemma 3.3, we get a 6-light algorithm for this case.

Intuitively, some properties of this path that we have used to account for it are:

• it does not use chords of the cycles (edges between vertices of the cycle that are not part
of the cycle),

• each cycle is visited only once, so it can pay for the (only) edge which exits it.

In this way, we could get constant lightness as long as x?(δ+(Vi)) ≤ O(1) (by rerouting all
this flow through Ai). However, neither of these properties seems to be easy to satisfy in the
general case, so we need to be more careful there.

5 The general case

We will again endeavor to get the lightness claim from looking locally at each cycle and using
Lemma 3.3.

We begin as usual: by redirecting 1 unit of flow over the boundary of each component to an
auxiliary vertex Ai. At the end, we will need to remove the extra vertices and thus reroute one
path inside each component Vi. This will ensure that all Vi-cuts are crossed by the returned set
of edges.

We describe the routine as a series of steps.

Step 5.1. We produce a weighted graph G′ together with a circulation y? on it in the same way
as in the unit-weight algorithm (see Section 2.5).21

21Weights in G′ are defined in the obvious way.

15

Note that we still have V1, ..., Vk ⊆ V (G′), although the new vertices Ai, Ie, Oe are not in
any component Vi. The flow y? is a nonnegative circulation in G′ satisfying y?(δ+(Ai)) = 1 for
each i.

The main difference is that now we are going to intercept all inflow and outflow of each
cycle C ∈ C by replacing the cycle with a certain simple structure, and then round the resulting
flow in a suitable way using integrality of circulations – we will call this outer-level rounding.
After we map the selected set of edges back to the original graph, we will need to complete the
flow inside each C to be a circulation; we do so using a second, local rounding – we call this
inner-level rounding. Our way of “contracting” the cycle is designed so as to let us argue that
repairing the flow inside the cycle later is cheap enough.

To make this more vivid, we have the following lemma that deals with inner-level rounding:

Lemma 5.1. Let C be a cycle in G, and let D be a multiset of boundary edges of C, i.e.,
D ⊆ δ+(C) ∪ δ−(C), such that |D ∩ δ+(C)| = |D ∩ δ−(C)|. For each v ∈ C define

rv := y?(δ(v, V \ C))− y?(δ(V \ C, v))− χD(δ(v, V \ C)) + χD(δ(V \ C, v)).

Now suppose that for each contiguous segment of the cycle C ′ ⊆ C we have
∣∣∑

v∈C′ rv
∣∣ ≤ 16.

Then there exists a multiset of edges FC ⊆ E(C) satisfying

|(FC ∪D) ∩ δ+(v)| = |(FC ∪D) ∩ δ−(v)|

for every vertex v ∈ C and having cost at most
∑

e∈E(C) y
?
ewe + 16 · w(C). It can be found in

polynomial time.

Let us explain the statement. The multiset D is the set of boundary edges of C obtained
from the outer-level rounding (which is going to replace y? on these boundary edges). We are
going to repair the degree balance of vertices in C by adding a suitable flow g to y?|E(C), and the
quantities rv are vertex demands for g. If their “prefix sums” are bounded, then we can obtain
g by using only the cycle edges, and putting only a constant flow on each of them. Therefore
what we want from the outer-level rounding is a multiset D which satisfies the condition of
Lemma 5.1 and which is not much more expensive than y?|δ+(C)∪δ−(C).

And actually, we will satisfy the prefix sum condition of Lemma 5.1 separately for inflow
and outflow. That is:

Fact 5.2. In the setting of Lemma 5.1, for each v ∈ C define

r+v := y?(δ(v, V \ C))− χD(δ(v, V \ C)),

r−v := y?(δ(V \ C, v))− χD(δ(V \ C, v)).

If for each contiguous segment C ′ of C we have
∣∣∑

v∈C′ r
+
v

∣∣ , ∣∣∑v∈C′ r
−
v

∣∣ ≤ 8, then
∣∣∑

v∈C′ rv
∣∣ ≤

16.

Proof. Use rv = r+v − r−v and |a− b| ≤ |a|+ |b|.

Proof of Lemma 5.1. Let v1, ..., v` be all vertices on the cycle C, in order (we will write v`+1 =
v1). First note that since y?(δ+(C)) = y?(δ−(C)) and χD(δ+(C)) = χD(δ−(C)), we have
rv1 + ... + rv` =

∑
v∈C rv = 0. Define M = −mini=1,...,` (rv1 + ...+ rvi); note that M ≥ 0 and

for each i = 1, ..., `, rv1 + ... + rvi + M ≥ 0. We define the added flow g on the cycle edges as
follows: g(vi,vi+1) := rv1 + ...+ rvi +M . Then:

• for each e, 0 ≤ ge ≤ 16 by the prefix sum assumption (note that ge =
∣∣rvi′ + ...+ rvi

∣∣ for
some i′, i),

16

• the flow g satisfies the demands r, i.e., for i = 1, ..., `, g(δ+(vi))− g(δ−(vi)) = rvi .

Now consider the flow f := y?|E(C) + g on E(C).

Claim 1. For each v ∈ C, f(δ+(v))− f(δ−(v)) = χD(δ−(v))− χD(δ+(v)).

To simplify notation in the proof of the claim, we fix v ∈ C and define, for any flow h, bal(h) :=
h(δ+(v))− h(δ−(v)). The operator bal is linear. We want to show that bal(f + χD) = 0. First
note that

rv = y?(δ(v, V \ C))− y?(δ(V \ C, v))− bal(χD)

because edges in D only enter/exit v from/to outside of C; and since bal(y?) = 0, we have

y?(δ(v, V \ C)) + y?(δ(v, C − v)) = y?(δ(V \ C, v)) + y?(δ(C − v, v))

and so

rv = −y?(δ(v, C − v)) + y?(δ(C − v, v))− bal(χD) = −bal(y?|E(C))− bal(χD).

Hence, since bal(g) = rv,

bal(f + χD) = bal(y?|E(C)) + bal(g) + bal(χD) = 0,

which proves Claim 1.

Claim 2. The cost of f is at most
∑

e∈E(C) y
?
ewe + 16 · w(C).

This is easy to see: the first summand is the cost of y?|E(C), and the cost of g is at most 16·w(C)
because ge ≤ 16 for all cycle edges e (and ge = 0 for other edges).

To finish, we use (a straightforward extension of) integrality of circulations: since there
exists a nonnegative fractional flow f of at most this cost satisfying vertex demands χD(δ−(v))−
χD(δ+(v)) (which are integral), there also exists a nonnegative integral circulation of at most
this cost satisfying these demands, and thus we get the sought multiset of edges FC . (This can
be done in polynomial time.)

Now we should come up with an outer-level rounding scheme which satisfies the prefix sum
condition of Fact 5.2 and is not too expensive. We describe how to deal with outgoing edges;
the incoming ones are dealt with identically. We will, roughly speaking, group all outflow of
each C ∈ C into groups of size 1 unit, and choose 1 edge from each such group. To satisfy the
prefix sum condition, the groups of edges should be more or less contiguous on the cycle; to be
cheap, we should group edges of similar cost together.

Step 5.2. For each cycle C ∈ C do the following. Let v1, ..., v` be all vertices on the cycle C,
in order. For each distinct edge cost c, we form a sequence of groups as follows. Order all
outgoing edges in any way so that for i < i′, all edges going out of vi come before all edges going
out of vi′. Begin with one empty group. For every edge e in this order do the following, with U
being the last-added group of edges:

• if
∑

f∈U y
?
f + y?e < 1, then add e to U ,

• if
∑

f∈U y
?
f + y?e = 1, then add e to U and form a new empty group,

• if
∑

f∈U y
?
f + y?e > 1, then replace e by two new parallel edges e′ and e′′, the first with

y?e′ = 1 −
∑

f∈U y
?
f and the second with y?e′′ = y?e − y?e′, add e′ to U , form a new empty

group, and recurse on e′′.

17

In this way we obtain a partition of δ+(C) into a collection U of groups such that:

• for each U ∈ U save at most two (one per distinct edge cost),
∑

f∈U y
?
f = 1 (and

∑
f∈U y

?
f ∈

[0, 1) for the remaining ones),

• for each i = 1, ..., `, there are at most two U ∈ U (one per distinct edge cost) whose set of
tails {tail(e) : e ∈ U} intersects both the set {v1, ..., vi} and its complement {vi+1, ..., v`},

• each U ∈ U contains edges of one cost.

Let us call the U ∈ U with
∑

f∈U y
?
f ∈ [0, 1) special. By the first property above, there are at

most two special U (one per distinct edge cost). This gives us:

Lemma 5.3. Let D be any subset of δ+(C) such that for each U ∈ U ,

• |D ∩ U | = 1 if U is not special,

• |D ∩ U | ∈ {0, 1} if U is special.

Recall that r+v = y?(δ(v, V \ C))− χD(δ(v, V \ C)). Then:

• for each contiguous fragment C ′ of C we have
∣∣∑

v∈C′ r
+
v

∣∣ ≤ 8, and

•
∑

e∈D w(e) ≤
∑

e∈δ+(C) y
?
ew(e) + 2.

Proof. For the first part, it is enough to show that for all i = 1, ..., `,
∣∣r+v1 + ...+ r+vi

∣∣ ≤ 4. Note
that

r+v1 + ...+ r+vi = y?(δ({v1, ..., vi}, V \ C))− χD(δ({v1, ..., vi}, V \ C))

=
∑
U∈U

[y?(U ∩ δ({v1, ..., vi}, V \ C))− χD(U ∩ δ({v1, ..., vi}, V \ C))] .

Now, the term in the square bracket is 0 unless U is special or its set of tails intersects both
{v1, ..., vi} and {vi+1, ..., v`}.22 But by the first and second properties above, there are at most
four such U , and for any U , the term in the parenthesis is in [−1, 1]. This proves the claim.

For the second part, we argue that only special groups U can bring imbalance to the quantity

22Otherwise, either {tail(e) : e ∈ U} ⊆ {v1, ..., vi}, in which case the term is equal to y?(U)−χD(U) = 1−1 = 0,
or {tail(e) : e ∈ U} ∩ {v1, ..., vi} = ∅, in which case the term is equal to 0− 0 = 0.

18

∑
e∈D w(e)−

∑
e∈δ+(C) y

?
ew(e), and each of them brings at most 1 unit of imbalance. Formally,∑

e∈D
w(e)−

∑
e∈δ+(C)

y?ew(e) =
∑

e∈δ+(C)

(χD(e)w(e)− y?ew(e))

=
∑

c : edge cost

c ·

 ∑
e∈δ+(C):
w(e)=c

(χD(e)− y?e)

=
∑

c : edge cost

c ·

 ∑
U∈U :

U has edges of cost c

(χD(U)− y?(U))

=
∑

c : edge cost

c ·

∑
U∈U :

U has edges of cost c
and U is special

(χD(U)− y?(U))

≤

∑
c : edge cost

c · 1

≤ 2

since there is at most one special U for any c.

The situation for incoming edges is exactly analogous.

Step 5.3. For each cycle C ∈ C, let UC be the collection of groups obtained as above from
outgoing edges, and let VC be the collection of groups of incoming edges (same as above, replacing
outgoing with incoming, tail with head, δ+ with δ− etc.).

And we have the following analogue of Lemma 5.3.

Lemma 5.4. Let D be any subset of δ−(C) such that for each U ∈ VC ,

• |D ∩ U | = 1 if U is not special,

• |D ∩ U | ∈ {0, 1} if U is special.

Recall that r−v = y?(δ(V \C, v))− χD(δ(V \C, v)). Then for each contiguous fragment C ′ of C
we have

∣∣∑
v∈C′ r

−
v

∣∣ ≤ 8.23

So how do we select one edge per group? Basically, we redirect all edges in a group to a
new auxiliary vertex (one per group), and then connect all the incoming-group vertices with
outgoing-group vertices in a rather arbitrary manner.

Step 5.4. We construct a digraph G′′, a circulation y′ on G′′, and a one-to-one mapping b from
a subset of E(G′) to E(G′′) 24 as follows:

• for each outgoing group U ∈
⋃
C∈C UC we create a vertex OutU ,

23We do not care about the cost here since we need only bound it for outgoing edges.
24The mapping b is only used for formalities.

19

• for each incoming group U ′ ∈
⋃
C∈C VC we create a vertex InU ′,

• for each component Vi we create a vertex Ai,

• for each e ∈ G going between two different components Vi, we create vertices Ie and Oe,

• for each edge e = (u, v) ∈ E(G′):

– if u and v lie on the same cycle C ∈ C: do nothing (i.e., don’t include the edge in
G′′),

– if u and v are in the same component Vi but on different cycles C, C ′, then redirect
both endpoints of the edge, i.e.: let U ∈ UC be the outgoing group of e, and let
U ′ ∈ VC′ be the incoming group of e; create an edge e′ = (OutU , InU ′) in G′′, put
y′e′ = y?e , and put b(e) = e′,

– if e is of the form (Oe′ , Ie′) or (Ie′ , Ai) or (Ai, Oe′) (for some e′ ∈ G and i), then
copy e to G′′ verbatim (i.e., create an edge e in G′′, put y′e = y?e and b(e) = e),

– if u = Ie′ (for some e′ ∈ G) and v belongs to a cycle C ′ ∈ C, then redirect one
endpoint of the edge, i.e.: let U ′ ∈ VC′ be the incoming group of e; create an edge
e′′ = (Ie′ , InU ′) in G′′, put y′e′′ = y?e , and b(e) = e′′,

– if v = Oe′ (for some e′ ∈ G) and u belongs to a cycle C ∈ C, then redirect one
endpoint of the edge, i.e.: let U ∈ UC be the outgoing group of e; create an edge
e′′ = (OutU , Oe′) in G′′, put y′e′′ = y?e , and b(e) = e′′,

• for each cycle C ∈ C:

– create a vertex CycC ,

– for each outgoing group U ∈ UC , create an edge e′ = (CycC , OutU) with y′e′ =∑
f∈U y

?
f ,

– for each incoming group U ′ ∈ VC , create an edge e′ = (InU ′ , CycC) with y′e′ =∑
f∈U ′ y

?
f .

It is clear from the construction that y′ is a circulation in G′′ (for vertices InU and OutU the
inflow and outflow are both equal to

∑
f∈U y

?
f , and for CycC they are equal to y?(δ+(C)) =

y?(δ−(C))). Moreover it clearly satisfies:

Claim 3. For each outgoing or incoming group U , if U is not special, then y′(δ+(vU)) =
y′(δ−(vU)) = 1 where vU = InU or OutU , and if U is special, then this quantity is in [0, 1]. And
for each i we have y′(δ+(Ai)) = 1.

Therefore by integrality of circulations, we can also find such an integral circulation.

Step 5.5. Find an integral circulation z in G′′ which satisfies the conditions of Claim 3. Then
map it back to a multiset Z of edges of G′ in the natural way. Formally, we use the map b, i.e.,
define χZ(e) := zb(e) (or 0 if b is not defined for e).

The conditions of Claim 3 translate to Z and G′ as follows: for each outgoing or incoming
group U , if U is not special, then |Z ∩ U | = 1, and if U is special, then |Z ∩ U | ∈ {0, 1}. And
each auxiliary vertex Ai has exactly one incoming and one outgoing edge in Z.

This means that for each cycle C ∈ C, the set D+ := Z ∩ δ+(C) satisfies the conditions of
Lemma 5.3. Same applies to the set D− := Z ∩ δ−(C) and Lemma 5.4. We have |D+| = |D−|
since z is a circulation and this size is the degree of CycC in it. Thus by Fact 5.2 and Lemma 5.1
(applied to D := D+ ∪D−) we can:

20

Step 5.6. Using Lemma 5.1 obtain, for each cycle C ∈ C, a multiset of edges FC ⊆ E(C) such
that the multiset F ′ := Z ∪

⋃
C∈C FC is Eulerian.

And finally:

Step 5.7. Remove the vertices Ai, and reroute one path per component Vi as in Section 4.25

Return the Eulerian subset F := F ′∪P ∪C of G, where P is the union of the newly added paths.

We are now left only with bounding the cost of F . Recall that we need to show that the
condition of Lemma 3.3 holds. Since we proved this for P ∪ C in Section 4, we only concentrate
on F ′ here.

We can bound the cost of internal edges for any C ∈ C by Lemma 5.1:∑
e∈E(C)

χF ′(e)w(e) =
∑

e∈E(C)

χFC (e)w(e) ≤
∑

e∈E(C)

y?ew(e) + 16 · w(C).

For boundary edges, by Lemma 5.3 (with D+ = Z ∩ δ+(C) = F ′ ∩ δ+(C)) we have:∑
e∈δ+(C)

χF ′(e)w(e) =
∑
e∈D+

w(e) ≤
∑

e∈δ+(C)

y?ew(e) + 2.

Summing these two, we get∑
e∈E(C)∪δ+(C)

χF ′(e)w(e) ≤
∑

e∈E(C)∪δ+(C)

y?ewe + 2 + 16 · w(C)

≤ 18 ·

 ∑
e∈E(C)∪δ+(C)

y?ew(e) + w(C)

≤ 18 · lb(C)

= 36 · lb(C),

where the second inequality follows from w(C) ≥ 1. Recall from Section 4 that P ∪ C adds
another 6 · lb(C) to this. In total, by Lemma 3.3, our algorithm is 42-light. This ends the proof
of Theorem 3.1.

Remark 5.5. Note that the full algorithm can be seen as a generalization of the algorithm of
Section 4, since if x?(δ+(Vi)) = 1, then y?(δ+(Vi)) = 0 and nothing else happens in Vi until a
single path is rerouted in Step 5.7.

Remark 5.6. So what if a cycle C ∈ C is not actually a simple cycle, but only an Eulerian
subgraph? Then we can (after Step 3.2) unwind it by creating a new artifical vertex v′ every
time a vertex v appears on the cycle not for the first time. All chords and boundary edges of C
should still point to the original vertex; the new vertices will have only one incoming and one
outgoing edge. Once we receive the partition V = V1 ∪ ... ∪ Vk, we suitably modify Vi to make
it still include the unwound C. Note that x? is probably no longer a Held-Karp solution for the
modified graph, but we actually only use that it is a circulation with x?(δ+(Vi)) ≥ 1 for each i,
which it still satisfies. Next, we run the algorithm. After it finishes, we rewind the cycle onto
the original Eulerian subgraph and map the returned edges in F in the natural way.

25And then contract all vertices Ie and Oe, thus reverting to the graph G.

21

6 Further directions

The next logical step would seem be to obtain a constant-factor approximation algorithm for
graphs with any two different edge weights. At the time of writing, this has already been done by
Svensson, T. and Végh [STV16]. However, it is not clear how to extend their techniques (or those
presented in this thesis) to get a constant-factor approximation even for three weights, and this
would be an interesting development. A further extension could be an O(β(k))-approximation
for k different edge weights (for some β being only a function of k). Finally, the big remaining
question is to understand the power of the Held-Karp relaxation for ATSP and see if it can
provide a constant guarantee in the general case. Although it would be arguably even more
curious to obtain a good algorithm which does not use this linear programming relaxation...

References

[AG15] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows and
asymmetric TSP. In Proceedings of the 56th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). IEEE, 2015.

[AGM+10] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan,
and Amin Saberi. An O(log n/ log log n)-approximation algorithm for the asymmet-
ric traveling salesman problem. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, pages 379–389, 2010.

[CGK06] Moses Charikar, Michel X. Goemans, and Howard J. Karloff. On the integrality ratio
for the asymmetric traveling salesman problem. Math. Oper. Res., 31(2):245–252,
2006.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, DTIC Document, 1976.

[FGM82] Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case perfor-
mance of some algorithms for the asymmetric traveling salesman problem. Networks,
12(1):23–39, 1982.

[FGS13] Zachary Friggstad, Anupam Gupta, and Mohit Singh. An improved integrality gap
for asymmetric TSP paths. CoRR, abs/1302.3145, 2013. URL: http://arxiv.org/
abs/1302.3145.

[GSS11] Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding
approach to the traveling salesman problem. In IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pages 550–559, 2011.

[KLS15] Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability
bounds for TSP. J. Comput. Syst. Sci., 81(8):1665–1677, 2015.

[LRS11] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combina-
torial optimization, volume 46. Cambridge University Press, 2011.

[MS11] Tobias Mömke and Ola Svensson. Approximating graphic TSP by matchings. In
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
pages 560–569, 2011.

22

http://arxiv.org/abs/1302.3145
http://arxiv.org/abs/1302.3145

[Muc12] Marcin Mucha. 13/9-approximation for graphic TSP. In 29th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2012, pages 30–41,
2012.

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer-Verlag, Berlin, 2003.

[STV16] Ola Svensson, Jakub Tarnawski, and László A. Végh. Constant factor approxima-
tion for ATSP with two edge weights. In Integer Programming and Combinatorial
Optimization (IPCO), Lecture Notes in Computer Science. Springer, 2016. URL:
http://arxiv.org/abs/1511.07038.

[SV14] András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for
the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica, 34(5):597–629, 2014.

[Sve15] Ola Svensson. Approximating ATSP by relaxing connectivity. In Proceedings of the
56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2015.
URL: http://arxiv.org/abs/1502.02051.

23

http://arxiv.org/abs/1511.07038
http://arxiv.org/abs/1502.02051

